National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
Search Results
- A conserved biosynthetic gene cluster is regulated by quorum sensing in a shipworm symbiontRobes, Jose Miguel D.; Altamia, Marvin A.; Murdock, Ethan G.; Concepcion, Gisela; Haygood, Margo G.; Puri, Aaron W. (American Society for Microbiology, 2022-06-14)Bacterial symbionts often provide critical functions for their hosts. For example, wood-boring bivalves called shipworms rely on cellulolytic endosymbionts for wood digestion. However, how the relationship between shipworms and their bacterial symbionts is formed and maintained remains unknown. Quorum sensing (QS) often plays an important role in regulating symbiotic relationships. We identified and characterized a QS system found in Teredinibacter sp. strain 2052S, a gill isolate of the wood-boring shipworm Bactronophorus cf. thoracites. We determined that 2052S produces the signal N-decanoyl-l-homoserine lactone (C10-HSL) and that this signal controls the activation of a biosynthetic gene cluster colocated in the symbiont genome that is conserved among all symbiotic Teredinibacter isolates. We subsequently identified extracellular metabolites associated with the QS regulon, including ones linked to the conserved biosynthetic gene cluster, using mass spectrometry-based molecular networking. Our results demonstrate that QS plays an important role in regulating secondary metabolism in this shipworm symbiont. This information provides a step toward deciphering the molecular details of the relationship between these symbionts and their hosts. Furthermore, because shipworm symbionts harbor vast yet underexplored biosynthetic potential, understanding how their secondary metabolism is regulated may aid future drug discovery efforts using these organisms.
- Somatostatin venom analogs evolved by fish-hunting cone snails: From prey capture behavior to identifying drug leadsRamiro, Iris Bea L.; Bjørn-Yoshimoto, Walden E.; Imperial, Julita S.; Gajewiak, Joanna; Salcedo, Paula Flórez; Watkins, Maren; Taylor, Dylan; Resager, William; Ueberheide, Beatrix; Bräuner-Osborne, Hans; Whitby, Frank G.; Hill, Christopher P.; Martin, Laurent F.; Patwardhan, Amol; Concepcion, Gisela; Olivera, Baldomero M.; Safavi-Hemami, Helena (American Association for the Advancement of Science, 2022-03-25)Somatostatin (SS) is a peptide hormone with diverse physiological roles. By investigating a deep-water clade of fish-hunting cone snails, we show that predator-prey evolution has generated a diverse set of SS analogs, each optimized to elicit specific systemic physiological effects in prey. The increased metabolic stability, distinct SS receptor activation profiles, and chemical diversity of the venom analogs make them suitable leads for therapeutic application, including pain, cancer, and endocrine disorders. Our findings not only establish the existence of SS-like peptides in animal venoms but also serve as a model for the synergy gained from combining molecular phylogenetics and behavioral observations to optimize the discovery of natural products with biomedical potential.
- Characterization of Alexandrium tamutum (Dinophyceae) isolated from Philippine waters, with the rare detection of paralytic shellfish toxinBenico, Garry; Azanza, Rhodora (Association of Systematic Biologists of the Philippines, 2022-04-01)Alexandrium tamutum M.Montressor, A.Beran & U.John is a non-toxic, bloom-forming dinoflagellate species commonly reported in temperate waters. In this study, 8 cultures of A. tamutum established from Bolinao Channel and Manila Bay, Philippines were characterized in terms of their morphology, phylogeny and toxicity. Cells were roundish, measuring 25.5 –29.84 µm long and 26.2–28.45 µm wide. The nucleus is equatorially elongated and located at the center of the cell. The chloroplasts are numerous, golden brown in color and radially arranged. Thecal tabulation is typical of Alexandrium: APC, 4', 6'', 6c, 6s, 5''', 2''''. Shape of the taxonomically informative thecal plates such as sixth precingular plate (6'') and posterior sulcal plate (sp) was similar to A. tamutum, which confirms the species identity. However, the presence of anterior and posterior attachment pores observed in our cultured isolates is the first case in this species. Molecular phylogeny inferred from LSU rDNA and ITS supports our identification by forming a well-supported clade composed of A. tamutum strains from other geographic regions. HPLC analysis showed that A. tamutum is generally non-toxic except for strain ATC9 which has low amount of decarbamoylsaxitoxin (dcSTX), resulting to a toxicity of 0.07 fmole STX eq per cell. The present study reports the first verified occurrence of Philippine A. tamutum with reliable morphological and molecular information, including the first record in Manila Bay and first detection of PST in one strain at a certain culture period.We acknowledge the Department of Science and Technology Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST PCAARRD) and the University of the Philippines-The Marine Science Institute (UP-MSI) for the funding support. We are grateful for the assistance of Joshua Vacarizas, Keith Pinto and Jenelyn Mendoza for the molecular and toxicity analyses of the cultures. We also acknowledge Estrelita Flores, Emelita Eugenio and Jayson Orpeza for their assistance during the fieldwork and other logistical support.
- Multifaceted assessment of wastewater-based epidemiology for SARS-CoV-2 in selected urban communities in Davao City, Philippines: A pilot studyOtero, Maria Catherine B.; Murao, Lyre Anni E.; Limen, Mary Antoinette G.; Caalim, Daniel Rev A.; Gaite, Paul Lorenzo A.; Bacus, Michael G.; Acaso, Joan T.; Miguel, Refeim M.; Corazo, Kahlil; Knot, Ineke E.; Sajonia, Homer; de los Reyes, Francis L.; Jaraula, Caroline Marie B.; Baja, Emmanuel S.; Del Mundo, Dann Marie N. (MDPI, 2022-07-19)Over 60 countries have integrated wastewater-based epidemiology (WBE) in their COVID-19 surveillance programs, focusing on wastewater treatment plants (WWTP). In this paper, we piloted the assessment of SARS-CoV-2 WBE as a complementary public health surveillance method in susceptible communities in a highly urbanized city without WWTP in the Philippines by exploring the extraction and detection methods, evaluating the contribution of physico-chemical–anthropogenic factors, and attempting whole-genome sequencing (WGS). Weekly wastewater samples were collected from sewer pipes or creeks in six communities with moderate-to-high risk of COVID-19 transmission, as categorized by the City Government of Davao from November to December 2020. Physico-chemical properties of the wastewater and anthropogenic conditions of the sites were noted. Samples were concentrated using a PEG-NaCl precipitation method and analyzed by RT-PCR to detect the SARS-CoV-2 N, RdRP, and E genes. A subset of nine samples were subjected to WGS using the Minion sequencing platform. SARS-CoV-2 RNA was detected in twenty-two samples (91.7%) regardless of the presence of new cases. Cycle threshold values correlated with RNA concentration and attack rate. The lack of a sewershed map in the sampled areas highlights the need to integrate this in the WBE planning. A combined analysis of wastewater physico-chemical parameters such as flow rate, surface water temperature, salinity, dissolved oxygen, and total dissolved solids provided insights on the ideal sampling location, time, and method for WBE, and their impact on RNA recovery. The contribution of fecal matter in the wastewater may also be assessed through the coliform count and in the context of anthropogenic conditions in the area. Finally, our attempt on WGS detected single-nucleotide polymorphisms (SNPs) in wastewater which included clinically reported and newly identified mutations in the Philippines. This exploratory report provides a contextualized framework for applying WBE surveillance in low-sanitation areas.The authors thank the Davao City Health Office, the local government units under the City Government of Davao, the partner hospitals for their support and assistance, and Diana Aga for discussions on sample collection and analyses. The authors would also like to thank the members of the Bortz Virology Laboratory at the University of Alaska Anchorage- Ralf Dagdag and Matthew Redlinger, Amanda Warr from the Roslin Institute, Nicole Wheeler from the University of Birmingham, Lara Urban, co-founder of PuntSeq, and Joe Russell from MRI Global for their expert advice in nanopore and wastewater sequencing.
- Anti-inflammatory activity of monosubstituted xestoquinone analogues from the marine sponge Neopetrosia compactaSusana, Shalice R.; Salvador-Reyes, Lilibeth A. (MDPI, 2022-03-22)Chronic inflammation is recognized as a contributor to multiple chronic diseases, such as cancer, cardiovascular, and autoimmune disorders. Here, a natural products-initiated discovery of anti-inflammatory agents from marine sponges was undertaken. From the screening of 231 crude extracts, a total of 30 extracts showed anti-inflammatory activity with no direct cytotoxic effects at 50 μg/mL on RAW 264.7 (ATCC®TIB-71™) murine macrophage cells stimulated with 1 μg/mL lipopolysaccharide (LPS). Bioactivity-guided purification of the anti-inflammatory extract from the sponge Neopetrosia compacta led to the isolation of xestoquinone (1), adociaquinone B (2), adociaquinone A (3), 14-hydroxymethylxestoquinone (4), 15-hydroxymethylxestoquinone (5), and an inseparable 2:1 mixture of 14-methoxyxestoquinone and 15-methoxyxestoquinone (6). Compounds 1–6 caused a concentration-dependent reduction of nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells, with 4–6 having low micromolar IC50 and acceptable selectivity index. Gene expression analysis using qRT-PCR showed that 1, 5, and 6 downregulated Il1b and Nos2 expression by 2.1- to 14.8-fold relative to the solvent control at 10 μM. Xestoquinone (1) and monosubstituted analogues (4–6), but not the disubstituted adociaquinones (2 and 3), caused Nrf2 activation in a luciferase reporter MCF7 stable cells. Compounds 5 and 6 caused a modest increase in Nqo1 gene expression at 10 μM. The anti-inflammatory activity of xestoquinone (1) and monosubstituted analogues (4–6) may, in part, be mediated by Nrf2 activation, leading to attenuation of inflammatory mediators such as IL-1β and NOS2.Samples were collected under gratuitous permit numbers GP-0084-15 and GP-0123-17, issued by the Department of Agriculture of the Philippines. We thank the municipalities of Bolinao, Pangasinan, and Puerto Galera, Oriental Mindoro for permission for sample collection. We acknowledge assistance from Z. L. Malto and DDHP chemical ecology group in obtaining the mass spectrometric data and sample collection, respectively.
- Global mass spectrometric analysis reveals chemical diversity of secondary metabolites and 44-Methylgambierone production in Philippine Gambierdiscus strainsMalto, Zabrina Bernice L.; Benico, Garry A.; Batucan, Jeremiah D.; Dela Cruz, James; Romero, Marc Lawrence J.; Azanza, Rhodora V.; Salvador-Reyes, Lilibeth A. (Frontiers Media SA, 2022-02-04)Surveillance and characterization of emerging marine toxins and toxigenic dinoflagellates are warranted to evaluate their associated health risks. Here, we report the occurrence of the ciguatera poisoning-causative dinoflagellate Gambierdiscus balechii in the Philippines. Toxin production and chemical diversity of secondary metabolites in G. balechii GtoxSAM092414, G. balechii Gtox112513, and the recently reported Gambierdiscus carpenteri Gam1BOL080513 were assessed using targeted and untargeted UPLC-MS/MS analysis and radioligand receptor-binding assay (RBA). 44-methylgambierone was produced by all three strains, albeitwith different levels based on RBA and UPLC-HRMS/MS analysis. The fatty acid composition was similar in all strains, while subtle differences in monosaccharide content were observed, related to the collection site rather than the species. Molecular networking using the GNPS database identified 45 clusters belonging to at least ten compound classes, with terpene glycosides, carbohydrate conjugates, polyketides, and macrolides as major convergence points. Species-specific peptides and polyhydroxylated compounds were identified in G. balechii GtoxSAM092414 and G. carpenteri Gam1BOL080513, respectively. These provide a glimpse of the uncharacterized biosynthetic potential of benthic dinoflagellates and highlight the intricate and prolific machinery for secondary metabolites production in these organisms.We would like to thank H. Junio and the Secondary Metabolites Profiling Laboratory of the Institute of Chemistry, University of the Philippines Diliman and K. B. Davis for assistance in the conduct of this study.
- Modified oxylipins as inhibitors of biofilm formation in Staphylococcus epidermidisPeran, Jacquelyn E.; Salvador-Reyes, Lilibeth A. (Frontiers Media SA, 2024-05-23)New approaches to combating microbial drug resistance are being sought, with the discovery of biofilm inhibitors considered as alternative arsenal for treating infections. Natural products have been at the forefront of antimicrobial discovery and serve as inspiration for the design of new antibiotics. We probed the potency, selectivity, and mechanism of anti-biofilm activity of modified oxylipins inspired by the marine natural product turneroic acid. Structure-activity relationship (SAR) evaluation revealed the importance of the trans-epoxide moiety, regardless of the position, for inhibiting biofilm formation. trans-12,13-epoxyoctadecanoic acid (1) and trans-9,10 epoxyoctadecanoic acid (4) selectively target the early stage of biofilm formation, with no effect on planktonic cells. These compounds interrupt the formation of a protective polysaccharide barrier by significantly upregulating the ica operon’s transcriptional repressor. This was corroborated by docking experiment with SarA and scanning electron micrographs showing reduced biofilm aggregates and the absence of thread-like structures of extrapolymeric substances. In silico evaluation revealed that 1 and 4 can interfere with the AgrA-mediated communication language in Staphylococci, typical to the diffusible signal factor (DSF) capacity of lipophilic chains.
- Emerging pharmaceutical contaminants in key aquatic environments of the PhilippinesMariano, Shyrill Mae F.; Angeles, Luisa F.; Aga, Diana S.; Villanoy, Cesar L.; Jaraula, Caroline Marie B. (Frontiers Media SA, 2023-09-13)Pharmaceuticals in natural waters are considered emerging pollutants due to their low concentrations and the negative effects they pose to the environment. Common sources of such pollutants include untreated wastewater from hospitals, residential, industrial, and agricultural sources. Many wastewater treatment methods only remove a subset of all pharmaceuticals from the wastewater; remaining pharmaceuticals are discharged into natural waters, and ultimately drain into coastal areas. Regions without proper wastewater treatment are especially susceptible to such contamination. This study deals with the distribution, sources, and seasonal variability of pharmaceuticals in key aquatic systems in the Philippines. Two watershed continuums (Davao Gulf, Davao City; Macajalar Bay, Cagayan de Oro City); two tourist areas (Boracay Island, Aklan; Mabini, Batangas); and one pristine atoll (Tubbataha Reefs, Palawan)—all with varied prevailing human population pressures—were studied. Samples of hospital wastewater as well as groundwater, surface and bottom water samples from rivers and coastal seas collected during dry and wet seasons were analyzed using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Thirty-four target pharmaceutical residues and antibiotics were extracted and quantified. Acetaminophen was detected at concentrations of up to 289.17 ppb in freshwater samples, and at concentrations of up to 253.39 ppb in seawater samples. Ubiquitous to all the sites was caffeine, reaching 1848.57 ppb. Sulfamethazine, a commonly used veterinary antibiotic, was detected at 764.91 ppb in a river site in Cagayan de Oro. Untreated hospital wastewater contained metformin, iopamidol, sulfamethoxazole, acetylsulfamethoxazole, ciprofloxacin, and azithromycin, but these pharmaceuticals were not detected in other river and coastal waters. Samples collected during the dry season exhibited higher concentrations than those from the wet season, which appears to be related to increase in transient populations from tourism activities as well as dilution. The presence of pharmaceutical residues and antibiotics in these areas and the potential impact on the environment indicate the need for stricter wastewater management measures, particularly in communities located near water bodies. As the results of this study show, such measures might be most beneficial and effective if imposed during dry season and in areas open to tourism.We thank the crew and researchers aboard M/Y Panata expedition PA0421 to Tubbataha in October 2019 and cruise to Boracay December 2019. Our gratitude to Mary Antoinette Limen, Mishel Valery Rañada, Gio Ferson Bautista, and Ernest Guiller Pineda for helping us in the field, and to Lahiruni Halwatura for assisting in the creation of a standard calibration curve for saltwater.
- Synthesis and biological evaluation of cyanobacterial-inspired peptidesCasanova, Jannelle R.; Villaraza, Aaron Joseph L.; Salvador-Reyes, Lilibeth (Philippine-American Academy of Science and Engineering, 2024-03-18)Cyanobacteria are known producers of structurally diverse and potent natural products; the majority are peptides with unique modifications. Yet, there remains a huge underexplored chemodiversity from cyanobacteria. Here, we designed a linear octapeptide as a product of combinatorial peptide design inspired by the natural products from the filamentous cyanobacteria Hapalosiphon welwitschii and Leptolyngbya sp. The target peptide was synthesized via solid-phase peptide synthesis (SPPS) using fluorenylmethyloxycarbonyl-protecting group (Fmoc) strategy. Structural diversity was expanded by the substitution of unnatural amino acids to yield five analogues. The structure and sequence of the synthesized peptides were confirmed using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Biological activity evaluation was done; with none of the peptides showing antimicrobial or cytotoxic activities against microbial pathogens and mammalian cells, respectively. To our knowledge, this study is the first to report a combinatorial peptide design inspired by a natural product and a predicted biosynthetic product. This strategy of peptide design expands the chemistry of a known bioactive natural product with the aid of unexplored cyanobacterial biosynthetic gene clusters.This study was funded by the Philippine Council for Health Research and Development – Department of Science and Technology through the Discovery and Development of Health Products – Marine Component Program. J.R.C acknowledges scholarship support from the Accelerated Science and Technology Human Resource Development Program of the Department of Science and Technology – Science Education Institute. We acknowledge the assistance of Z. Malto, J. Peran and S. Susana in the conduct of the biological assays. This is MSI Contribution No. 502.
- Using constellation pharmacology to characterize a novel α-conotoxin from Conus ateralbusNeves, Jorge L. B.; Urcino, Cristoval; Chase, Kevin; Dowell, Cheryl; Hone, Arik J.; Morgenstern, David; Chua, Victor M.; Ramiro, Iris Bea L.; Imperial, Julita S.; Leavitt, Lee S.; Phan, Jasmine; Fisher, Fernando A.; Watkins, Maren; Raghuraman, Shrinivasan; Tun, Jortan O.; Ueberheide, Beatrix M.; McIntosh, J. Michael; Vasconcelos, Vitor; Olivera, Baldomero M.; Gajewiak, Joanna (MDPI, 2024-02-29)The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs. Here, we describe the discovery and characterization of a novel conotoxin from Conus ateralbus, αCtx-AtIA, which has an amino acid sequence homologous to the well-described αCtx-PeIA, but with a different selectivity profile towards nAChRs. We tested the synthetic αCtx-AtIA using the calcium imaging-based Constellation Pharmacology assay on mouse DRG neurons and found that αCtx-AtIA significantly inhibited ACh-induced calcium influx in the presence of an α7 positive allosteric modulator, PNU-120596 (PNU). However, αCtx-AtIA did not display any activity in the absence of PNU. These findings were further validated using two-electrode voltage clamp electrophysiology performed on oocytes overexpressing mouse α3β4, α6/α3β4 and α7 nAChRs subtypes. We observed that αCtx-AtIA displayed no or low potency in blocking α3β4 and α6/α3β4 receptors, respectively, but improved potency and selectivity to block α7 nAChRs when compared with αCtx-PeIA. Through the synthesis of two additional analogs of αCtx-AtIA and subsequent characterization using Constellation Pharmacology, we were able to identify residue Trp18 as a major contributor to the activity of the peptide.We thank the Universidade Técnica do Atlântico (UTA; Cabo Verde) and Cabo Verde National Directorate of the Environment for sample collection support. We thank David Ginty (Harvard Univ.) for sharing the transgenic mice. We thank Joseph W. Aman for conducting the initial screening of the venom fractions, Samuel Espino for providing us with the picture of the shells, and Grzegorz Gajewiak for assistance with handling the photos and preparing some of the graphics used in this article.