menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 10 of 21
  • Partial mortality in Porites corals: Variation among Philippine reefs
    Wesseling, Ineke; Uychiaoco, Andre J.; Aliño, Porfirio M.; Vermaat, Jan E. (Wiley, 2001-01)
    Partial mortality or tissue necrosis was quantified in the massive scleractinian coral Porites at three sites in The Philippines (Bolinao, NW Luzon; Puerto Galera, Mindoro; and El Nido, N Palawan). Overall, 15 ± 1 (mean ± 1 standard error, 642 replicates) percent of colony area was dead, mean colony area was 1135 plusmn; 127 cm2, and lesion density was 1.7 ± 0.1 dm—2. Total live coral cover varied between 20 and 63% in belt transects, and Porites and Acropora cover were inversely correlated. ANOVA models incorporating effects of site, colony size, sedimentation rates, wave exposure and depth were highly significant but explained only a small proportion of the variation observed in lesion density and percent dead area (respectively 8 and 2%). Lesion density was found to vary significantly with site (contributed 29% to this explained variance), decrease with increasing colony area (33%), and increase with increasing sedimentation (23%) and wave exposure (14%). Colony size was significantly explained by the factor site (contributing 61% to the total 29% explained variance) and depth (34%), with the smallest colonies being observed in Bolinao and the largest in El Nido. Densities of lesions were highest in Bolinao, intermediate in Puerto Galera, and lowest in El Nido. This pattern is parallel to intensity of human reef exploitation and opposite to that in colony size, live coral cover and Acropora cover. Since only a small part of the observed variance in partial mortality estimators was explained by the ANOVAs, other factors not quantified here must have been more important (e.g. disease incidence, predation, human exploitation).
  • Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines
    Bach, S. S.; Borum, J.; Fortes, M. D.; Duarte, C. M. (Inter-Research Science Center, 1998)
    The response of mixed Southeast Asian seagrass beds to siltation was analyzed based on field data, a transplantation experiment and experimental manipulation of light availability in seagrass populations along a silt gradient at Cape Bolinao,The Philippines. Seagrass species diversity, shoot density and depth penetration declined with increasing amounts of suspended material and increasing water column light attenuation along the silt gradient. The seagrass species could be ranked according to decreasing tolerance to siltation as: Enhalus acoroides > Cymodocea serrulata > Halodule uninervis > Thalassia hemprichii > Halophila ovalis > Cymodocearotundata > Syringodium isoetifolium. A gradual decline in shoot density and depth penetration of the different species along the silt gradient suggested that changes in the vertical light attenuation coefficient in the water column, primarily caused by differences in suspended inorganic solids, was the most important factor affecting seagrass performance. However, inconsistency among the species in response to increasing water depth, artificial shading and transplantation indicated that other factors, such as siltation-derived changes in sediment conditions, contribute to the sequential loss of seagrass species along the silt gradient.
  • Comparison of photosynthetic responses of healthy and ‘diseased’ Kappaphycus alvarezii (Doty) Doty using P vs I curve
    Ganzon-Fortes, E. T.; Azanza-Corrales, R.; Aliaza, T. (Walter de Gruyter GmbH, 1993)
    Healthy and 'diseased' thalli of Kappaphycus alvarezii were collected from two different sites in Bolinao, Pangasinan, northern Philippines. Their photosynthetic responses to varying photon fluence levels we reassessed. The healthy branches had higher photosynthetic rates (expressed in mgO2 gdw"1 h'1) at all light levels and did not show photoinhibition at photon fluence levels of up to 800 μπιοί photons m~2s~!. The 'diseased' branches showed a significant decrease in their photosynthetic performance as manifested by their lower Pmax, increased Ic, and lower alpha, and a photoinhibition above 600 μιηοΐ photons m~2 s"1. Examination of the concentration of pigments — chlorophyll a, r-phycoerythrin and r-phycocyanin, revealed a significant drop in the 'diseased' plants, suggesting the major role played by these pigments in the observed differences in their photosynthetic responses.
  • Yield estimates, catch, effort and fishery potential of the reef flat in Cape Bolinao, Philippines
    Campos, W. L.; del Norte-Campos, A. G. C.; McManus, J. W. (Hindawi Limited, 1994-10)
    Catch, fishing effort and yield estimates of the Cape Bolinao reef flat fishery in Lingayen Gulf, Philippines are provided, based on data collected from May 1987 to April 1988. The dynamics of the dominant species, the rabbitfish Siganus fuscescens, suggest that such fisheries are capable of maintaining a high production in site of heavy fish in pressure. However, yield comparisons with those of other reef fisheries in the Indo-Pacific region, along with characteristics of the catch and the use of multiple gear types, suggest that current extraction rates should not be increased.
  • Feeding ecology and trophic role of sea urchins in a tropical seagrass community
    Klumpp, David W.; Salita-Espinosa, J. T.; Fortes, M. D. (Elsevier BV, 1993-04)
    The grazing impact of urchins on seagrass and algal resources, and the relative importance of this to the lower-level trophic flux of a tropical seagrass community were investigated. Thalassia hemprichii (Ehrenb.) Aschers. accounted for 80–93% of seagrass frond biomass at Bolinao in the Philippines. Growth rate of seagrass was 6.6 mm per shoot day−1, or 2.3 mg AFDW per shoot day−1. Production of seagrass fronds per unit area of seagrass bed varied with location from 870 to 1850 mg AFDW m−2 day−1. Urchin density ranged from 0.9 to 4.2 m−2, with Tripneustes gratilla (L.) and Salmacis sphaeroides (L.) being the most common species. Tripneustes gratilla fed mostly on attached seagrass fronds (77–89% of diet), especially Thalassia hemprichii, whereas S. sphaeroides was a generalist, consuming Thalassia hemprichii fronds (13–65%), detached seagrass debris (5–39%), the red alga Amphiroa fragilissima (L.) Lamour. (0–30%), algal-coated sediment and rubble (0–51%) in proportions that varied with the availability of preferred food types. Live Thalassia hemprichii fronds were clearly preferred over macroalgae or dead seagrass fronds by Tripneustes gratilla, but S. sphaeroides consumed all three food types without preference. Both urchins avoided the common brown alga, Sargassum crassifolium J. Agardh. Urchins absorbed 73–76% of organic matter in seagrass fronds with epiphytes (75% of DW), and 55% of that in epiphyte-free fronds. Seagrass debris and the macroalgae A. fragilissima were of lower food quality as they were lower in organic matter, and this matter was absorbed less efficiently by urchins. Rates of ingestion (IR in g WW per urchin day−1) were proportional to body weight (W in g WW) according to the functions: IR = 0.56W0.34 (T. gratilla) and IR = 0.17W0.53 (Salmacis sphaeroides). Predicted grazing impact of urchins on seagrass resources varied spatially and temporally. Estimated annual grazing rate at the main study site was 158 g AFDW m−2, equivalent to 24% of annual seagrass production, but owing to large changes in urchin population structure and density, grazing impact is expected to vary from < 5% to > 100% at different times of year. A synthesis of knowledge on the lower-level trophic pathways in this system indicates that seagrass-urchin and periphyton-epifauna grazing interactions are both important in their contribution to overall trophic flux.
  • Topoisomerase II-Mediated DNA cleavage by adocia- and xestoquinones from the Philippine sponge Xestospongia sp.
    Concepcion, Gisela; Foderaro, Tommaso A.; Eldredge, Glenn S.; Lobkovsky, Emil; Clardy, Jon; Barrows, Louis R.; Ireland, Chris M. (American Chemical Society (ACS), 1995-10)
    Investigation of an orange Xestospongia sp. sponge collected at Cape Bolinao in northern Luzon, Philippines, yielded the known compounds adociaquinones A and B (1, 2) and six new metabolites, secoadociaquinones A and B (3, 4), 14-methoxyxestoquinone (5), 15-methoxyxestoquinone (6), 15-chloro-14-hydroxyxestoquinone (7), and 14-chloro-15-hydroxyxestoquinone (8). All compounds showed inhibition of topoisomerase II in catalytic DNA unwinding and/or decatenation assays. Furthermore, adociaquinone B showed activity in a KSDS assay, suggesting it inhibits the enzyme by freezing the enzyme-DNA cleavable complex. Interestingly, adociaquinone B did not displace ethidium bromide from DNA or unwind supercoiled DNA, implying it does not intercalate DNA.
  • Wound healing in cultured Eucheuma alvareziivar. tambalang Doty
    Azanza-Corrales, R.; Dawes, C. J. (Walter de Gruyter GmbH, 1989)
    Wound healing in segments of Eucheuma alvarezii var. tambalang grown in enriched media in the laboratory can be divided into four stages based on histological and cytological changes. During the first stage, approximately 2—4 days after wounding, proteinaceous and phenolic substances concentrate on pit plugs of cells adjacent to the wounded surface. In the second stage, about the sixth day, cellular extensions are produced from the pits of medullary and cortical cells of sub-wound layer. During the third stage, about the 8th day, the cellular extensions divide several times and elongate towards the surface. A new cortical or wound tissue is formed during the fourth stage beginning on the 12th day. The wound tissue is continuous with the old cortex within 3 weeks.
  • Structure and temporal dynamics of macroinfaunal communities of a sandy reef flat in the northwestern Philippines
    Nacorda, Hildie Maria E.; Yap, Helen T. (Springer, 1997)
    Temporal variation in macroinfaunal community structure was assessed from monthly monitoring of the sandy substrate of the Lucero reef flat in Bolinao, Pangasinan (northwestern Philippines) between November 1990 and November 1991. The community was composed of 98 taxa from 10 phyla and was consistently dominated by the polychaete family Syllidae (19–33% of monthly total abundance). Five polychaete and crustacean taxa co-dominated with the syllids and exhibited monthly shifts in dominance ranks. Overall, there was no significant change in the composition of the community after a year. Results of the study show that the temporal dynamics of the community was a function of the seasonality in salinity and of the relatively consistent nature of the substrate. Abundances of macroinfaunal crustaceans, chaetognaths, and molluscs fluctuated significantly over 12 months, and corresponded to the seasonal fluctuation in salinity. Total and polychaete abundances did not show significant monthly variation, but tended to be influenced by salinity changes. Densities of turbellarians, nemerteans, and echinoderms appeared homogeneous across 12 months, and correlated with the consistency of substrate structure in the reef flat over the experimental period. In addition, sipunculid numbers seemed to be supported by the stable amount of organic matter in the sandy substrate.
  • Seasonality of standing crop of a Sargassum (Fucales, Phaeophyta) bed in Bolinao, Pangasinan, Philippines
    Trono, Gavino C.; Lluisma, Arturo O. (Springer, 1990-09)
    The seasonality of standing crop of a Sargassum bed was investigated by conducting monthly sampling from February 1988 to July 1989. Environmental parameters of water movement, salinity, number of daytime minus tides, and water temperature were also measured. An intra-annual pattern of variation in standing crop of Sargassum crassifolium, S. cristaefolium, S. oligocystum, and S. polycystum was observed. Standing crop was generally lowest in February, March, April, or May, and highest in November through January. Sargassum accounted for about 35 to 85% of the monthly algal standing crop of the bed, and the observed variation in overall standing crop of the bed generally reflected the standing crop of Sargassum. The seasonality of the standing crops of the associated algal divisions also followed an annual cycle, but their maximum and minimum standing crops did not coincide with those of Sargassum. Individually, as well as collectively, the standing crops of the Sargassum spp. were poorly correlated with the environmental factors observed.
  • Thumbnail Image
    Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): in situ experimental evidence
    Agawin, N. S. R.; Duarte, C. M.; Fortes, M. D. (Inter-Research Science Center, 1996)
    Nutrient limitation of Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata in 2 mixed seagrass beds (Silaqui and Lucero) in Cape Bolinao, NW Philippines was investigated through a 4 mo in situ nutrient addition experiment. Leaf growth of T. hemprichii and E. acoroides significantly increased by 40 to 100% and 160%, respectively, following fertilization. Leaf biomass of the 3 species also increased significantly by 60 to 240% following nutrient additions. The increased growth and biomass with fertilization was supported by enhanced photosynthetic activity, consequently by higher chlorophyll and nutrient concentrations in the photosynthetic tissues. These results demonstrated nutrient limitation of seagrass growth and photosynthetic performance at the 2 sites in Cape Bolinao. The nature and extent of nutrient limitation, however, varied between sites and among species. T. hemprichii and E. acoroides appeared to be mainly P deficient and N deficient, respectively (from significant increases in tissue P and N concentration following fertilization, respectively). The deficiency was moderate (26% of requirement) for T. hemprichii but substantial for E. acoroides (54% of requirement). Moreover, N and P deficiency was greater in Lucero than in Silaqui, consistent with the higher ambient nutrient concentration in the porewater and sediment nutrient and organic matter content in Silaqui. These results emphasize the importance of local differences in the factors controlling nutrient losses and gains in seagrass meadows and, more importantly, the importance of identifying the species-specific traits that generate the interspecific plasticity of nutrient status.