menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Strong genetic structure and limited gene flow among populations of the tropical seagrass Thalassia hemprichii in the Philippines
    Nakajima, Yuichi; Matsuki, Yu; Fortes, Miguel D.; Uy, Wilfredo H.; Campos, Wilfredo L.; Nadaoka, Kazuo; Lian, Chunlan (MDPI AG, 2023-02-05)
    Seagrasses are marine angiosperms, and seagrass beds maintain the species diversity of tropical and subtropical coastal ecosystems. For proper understanding, management and conservation of coastal ecosystems, it is essential to understand seagrass population dynamics. Population genetic studies can cover large geographic scales and contribute to a comprehensive understanding of reproductive dynamics and potential dispersal among locations. The clonal and genetic diversity and genetic connectivity of Thalassia hemprichii in the Philippines were estimated by a population genetics approach. The geographic scale of this study has a direct distance of approximately 1600 km. Although high clonal diversity was found in some sites (R = 0.07–1.00), both sexual and asexual reproduction generally maintains separate populations. Genetic diversity is not definitely correlated with latitude, and genetic differentiation is significant in all pairs of sites (FST = 0.026–0.744). Complex genetic structure was found in some regions, even at a fine geographic scale. The migration of fruits and seedlings was elucidated as an infrequent and stochastic event. These results suggest the necessity for the conservation of this species due to a deficiency in migrants from external regions.
    We thank members of CECAM project.
  • Thumbnail Image
    Phosphorus as a driver of nitrogen limitation and sustained eutrophic conditions in Bolinao and Anda, Philippines, a mariculture-impacted tropical coastal area
    Ferrera, Charissa M.; Watanabe, Atsushi; Miyajima, Toshihiro; San Diego-McGlone, Maria Lourdes; Morimoto, Naoko; Umezawa, Yu; Herrera, Eugene; Tsuchiya, Takumi; Yoshikai, Masaya; Nadaoka, Kazuo (Elsevier, 2016)
    The dynamics of nitrogen (N) and phosphorus (P) was studied in mariculture areas around Bolinao and Anda, Philippines to examine its possible link to recurring algal blooms, hypoxia and fish kills. They occur despite regulation on number of fish farm structures in Bolinao to improve water quality after 2002, following a massive fish kill in the area. Based on spatiotemporal surveys, coastal waters remained eutrophic a decade after imposing regulation, primarily due to decomposition of uneaten and undigested feeds, and fish excretions. Relative to Redfield ratio (16), these materials are enriched in P, resulting in low N/P ratios (~ 6.6) of regenerated nutrients. Dissolved inorganic P (DIP) in the water reached 4 μM during the dry season, likely exacerbated by increase in fish farm structures in Anda. DIP enrichment created an N-limited condition that is highly susceptible to sporadic algal blooms whenever N is supplied from freshwater during the wet season.