National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
3 results
Search Results
- Organic matter compositions and loadings in river sediments from humid tropical volcanic Luzon island of the PhilippinesLin, Baozhi; Liu, Zhifei; Eglinton, Timothy I.; Blattmann, Thomas M.; Kandasamy, Selvaraj; Haghipour, Negar; Siringan, Fernando P. (American Geophysical Union, 2021-07)Tropical rivers deliver ∼60% of particulate organic carbon to the world ocean. However, compositions and loadings of sedimentary organic matter (OM) from tropical small mountainous rivers are largely unknown. Here, we provide an initial constrain on sources of sedimentary OM from 28 fluvial systems across Luzon in the Philippines by measuring total organic carbon (TOC), total nitrogen (TN), stable carbon isotope (δ13C) and radiocarbon activity of TOC (expressed as fraction modern—Fm), as well as grain size and mineral surface area (SA) of sediments. Results indicate that sediments in Luzon rivers contain both contemporary and 14C-depleted OM (Fm: 0.71–1.06, mean 0.97 ± 0.07) with a wide range of δ13C values (−28.3‰ to −17.7‰, −24.9 ± 2.2‰). This is attributed to the OM sources originated from modern surface soil and 14C-depleted subsoil and deep soil vegetated by C3 and C4 plants, with mean fraction of C3 plant at 80% ± 11%. Minor input from bedrock may also contribute to the 14C-depleted OM in sediments, accounting for 6% ± 6%. Sediments in most rivers are featured by low OC loadings (OC/SA ratio < 0.4 mg C m−2), owing either to a less OM input or intensive OM degradation. The estimated yields of particulate OC from Luzon vary between 3.2 and 3.7 t km−2 yr−1, which is higher than most tropical large rivers.We thank Peter B. Zamora and Yulong Zhao for assistance during the fieldwork sampling, Daniel Montluçon, Yanli Li and all members of Ion Beam Physics Laboratory at ETH for technical and laboratory assistance, and Bingbing Wei for his help during preparation of this manuscript. This work was supported by the National Natural Sciences Foundation of China (Grant Nos. 41530964 and 91528304), the Swiss National Science Foundation (200020_163162) and the fellowship of China Postdoctoral Science Foundation (2020M671198). BL thanks the China Scholarship Council (20170260239) for the support during her stay at ETH Zürich (Switzerland).
- Clay mineral nanostructures regulate sequestration of organic carbon in typical fluvial sedimentsSong, Hongzhe; Liu, Zhifei; Lin, Baozhi; Zhao, Yulong; Siringan, Fernando P.; You, Chen-Feng (Elsevier, 2024-02-15)The association between clay minerals and organic carbon is pivotal for understanding transport, burial, and preservation processes of sedimentary organic carbon. However, fine-scale microscopic studies are still limited in assessing the effect of diverse clay mineral structures and properties on organic carbon sequestration. In this study, we employed X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy coupled with energy dispersive spectroscopy and electron energy loss spectroscopy analyses to investigate the nanoscale interaction between clay minerals and organic carbon of two typical fluvial sediment samples with contrasting clay mineral compositions and organic carbon origins. Sample from Taiwan shows abundant illite and chlorite with petrogenic organic carbon, while sample from Luzon has significant smectite with pedogenic organic carbon. We observed that the nanostructure of the clay minerals controls the distribution of organic carbon. In the Luzon sample, the organic carbon is tightly associated with smectite, occupying expandable interlayer spaces. In the Taiwan sample, however, the organic carbon is primarily confined on the surface and edge of illite. These findings offer valuable insights into the selective association of organic carbon with clay minerals and underscore the role of clay mineral nanolayer structures in governing the occurrence and preservation of organic carbon in sediments. A comprehensive understanding of these interactions is crucial for accurate assessments of carbon cycling and sequestration in the natural environment.We sincerely thank Shunai Che and Lu Han for their help in TEM experiments and data processing. We thank Editor Dr. Andrew Hursthouse for handling the manuscript and two anonymous reviewers for their constructive comments on the early version of this paper. This work was supported by the National Natural Science Foundation of China (42130407, 42188102, 42306066) and the Interdisciplinary Project of Tongji University (ZD-22-202102).
- Clay minerals control silicon isotope variations of fine-grained river sediments: Implication for the trade-off between physical erosion and chemical weatheringLing, Chen; Liu, Zhifei; Yu, Xun; Zhao, Yulong; Siringan, Fernando P.; Le, Khanh Phon; Sathiamurthy, Edlic; You, Chen-Feng; Chen, Kaiyun (Elsevier, 2024)Stable silicon (Si) isotopes in fluvial sediments can provide insights into understanding silicate weathering processes on the Earth's surface. However, a lack of comprehensive studies has hindered full understanding of the factors influencing Si isotope fractionation during continental weathering. In this study, through the analysis of Si isotopes in fine-grained sediments from 13 rivers surrounding the South China Sea, significant variation of Si isotopes in bulk detrital sediments (<63 μm) was observed, with δ30Si values ranging from −0.17‰ to −1.09‰. At basin scale, the δ30Si values are influenced by multiple controlling factors such as climatic conditions, lithology, and tectonic settings, which have a close relationship with the content of clay minerals. The characteristics of weathering types and intensities are ultimately reflected in the weathering products, specifically clay minerals. Compiling data across multiple grain sizes from major rivers globally, robust correlations based on clay mineral classification between δ30Si and Al/Si ratio have been observed, which are unaffected by regional and grain-size variations. As the dominant clay mineral group transitions from illite/chlorite to smectite and kaolinite, the degree of Si isotope fractionation increases progressively. This sequence indicates a shift from stronger physical erosion to more intensive chemical weathering, suggesting a transition in the weathering regime from weathering-limited to transport-limited. This study reveals the intrinsic link between Si isotopic compositions and clay mineral assemblages, providing implications for similar stable isotope research and offering a potential indicator for understanding continental weathering processes and their contributions to the global carbon cycle.