menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Growth and metabolic responses of the giant clam-zooxanthellae symbiosis in a reef-fertilisation experiment
    Belda-Baillie, C. A.; Leggat, W.; Yellowlees, D. (Inter-Research Science Center, 1998)
    To evaluate the impact of elevated nutrients on reef organisms symbiotic with zooxanthellae, giant clams Tridacna maxima were exposed daily to increased ammonia and phosphate (N, P, N+P) in their natural reef environment for 3 to 6 mo. The results strongly corroborate the major responses of the symbiotic association to nutrient enrichment previously observed (with T. gigas) under controlled outdoor conditions. Exposure of the clams to elevated N (10 µM) increased zooxanthellae density, reduced zooxanthellae size, down-regulated N uptake by zooxanthellae freshly isolated from their hosts, and reduced glutamate in the clam haemolymph, with increased pools of some free amino acids (methionine, tyrosine) in the zooxanthellae. These results confirm that the zooxanthellae in giant clams are N limited in situ and have free access to inorganic N from the sea water. There is also corroborating evidence that the zooxanthellae are P limited in situ as well, possibly due to host interference. While the N:P ratios of the animal host reflected ambient N and P concentrations in the sea water, those of the zooxanthellae did not. Regardless of P exposure (2 µM P) of the clams, zooxanthellae N:P ratios were consistently high(>30:1) and phosphate concentrations in the clam haemolymph bathing the zooxanthellae tube system consistently low (<0.1 µM). These field findings, consistent with previous laboratory observations, confirm the limiting roles of both N and P in the giant clam-zooxanthellae symbiosis. That significant changes occurred earlier and at lower nutrient loading compared to some reef organisms investigated within the same experimental framework further demonstrates organism-level responses of a potential bio-indicator of the early onset of eutrophication in reef waters.
  • Phosphate acquisition in the giant clam-zooxanthellae symbiosis
    Belda, C. A.; Yellowlees, D. (Springer, 1995-12)
    The effect of phosphate on the giant clam Tridacna gigas and on its symbiotic dinoflagellate Symbiodinium sp. was compared with that on cultured Symbiodinium sp. originally isolated from the same clarn species. Incubation of whole clams in elevated phosphate (10 μM) reduced their capacity for phosphate uptake, but the uptake capacity of the clam's zooxanthellae population was not influenced. In addition, there was no change in the zooxanthellae density and the N:P ratio, of these algae. On the other hand, cultured zooxanthellae were influenced by the phosphate regimen of their culture medium. Compared with controls (0 μM P), addition of 10 μM phosphate to the culture medium caused an increase of 100% in cell density and decreases of 50% in the N:P ratio, and 80% in the phosphate-uptake capacity of the zooxanthellae. Zooxanthellae freshly isolated from the clams exhibited properties similar to those of zooxanthellae cultured in the absence of phosphate. These results demonstrate that the zooxanthellae population of T. gigas have limited access to the inorganic phosphate in sea water and the phosphate reserves within the animal host.