National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
2 results
Search Results
- Iron availability modulates the response of endosymbiotic dinoflagellates to heat stressReich, Hannah G.; Tu, Wan-Chen; Rodriguez, Irene B.; Chou, Yalan; Keister, Elise F.; Kemp, Dustin W.; LaJeunesse, Todd C.; Ho, Tung-Yuan (2020)Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef-building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe’) to limiting (50 pM Fe’) under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe′ at 26–28°C vs. 250 pM Fe′ at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga’s response to thermal stress suggests the importance of trace metals to the health of coral-algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.
- Trace metals in phytoplankton: Requirements, function, and composition in harmful algal bloomsManic, Dolly; Redil, Richard; Rodriguez, Irene (Multidisciplinary Digital Publishing Institute (MDPI), 2024)In a constantly changing environment brought about by the climate crisis and escalated anthropogenic perturbations driven by the growing population, harmful algal bloom dynamics and their impacts are expected to shift, necessitating adaptive management strategies and comprehensive research efforts. Similar to primary productivity, HABs have been thought to be driven primarily by major nutrients such as N, P, and Si. However, recent investigations on the role and importance of micronutrients as limiting factors in aquatic environments have been highlighted. This paper provides a review of metal and phytoplankton interactions, with a specific emphasis on pertinent information on the influence of trace nutrients on growth, toxin production, and other underlying mechanisms related to the dynamics of HABs. Low to near-depleted levels of essential nutrients, including Fe, Cu, Zn, Se, Mn, Co, and Mo, negatively impact cell growth and proliferation of various marine and freshwater HAB species. However, evidence shows that at elevated levels, these trace elements, along with other non-essential ones, could still cause toxic effects to certain HAB species manifested by decreased photosynthetic activities, oxidative stress, ultrastructure damage, and cyst formation. Interestingly, while elevated levels of these metals mostly result in increased toxin production, Co (i.e., yessotoxins, gymnodimine, and palytoxins) and Mn (i.e., isodomoic acid, okadaic and diol esters) enrichments revealed otherwise. In addition to toxin production, releasing dissolved organic matter (DOM), including dissolved organic carbon (DOC) and humic substances, was observed as an adaptation strategy, since these organic compounds have been proven to chelate metals in the water column, thereby reducing metal-induced toxicity. Whilst current research centers on free metal toxicity of specific essential elements such as Cu and Zn, a comprehensive account of how trace metals contribute to the growth, toxin production, and other metabolic processes under conditions reflective of in situ scenarios of HAB-prone areas would yield new perspectives on the roles of trace metals in HABs. With the growing demands of the global population for food security and sustainability, substantial pressure is exerted on the agriculture and aquaculture sector, highlighting the need for effective communication of information regarding the interactions of macro- and micronutrients with HABs to improve existing policies and practices. © 2024 by the authors.