menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 2 of 2
  • A conserved biosynthetic gene cluster is regulated by quorum sensing in a shipworm symbiont
    Robes, Jose Miguel D.; Altamia, Marvin A.; Murdock, Ethan G.; Concepcion, Gisela; Haygood, Margo G.; Puri, Aaron W. (American Society for Microbiology, 2022-06-14)
    Bacterial symbionts often provide critical functions for their hosts. For example, wood-boring bivalves called shipworms rely on cellulolytic endosymbionts for wood digestion. However, how the relationship between shipworms and their bacterial symbionts is formed and maintained remains unknown. Quorum sensing (QS) often plays an important role in regulating symbiotic relationships. We identified and characterized a QS system found in Teredinibacter sp. strain 2052S, a gill isolate of the wood-boring shipworm Bactronophorus cf. thoracites. We determined that 2052S produces the signal N-decanoyl-l-homoserine lactone (C10-HSL) and that this signal controls the activation of a biosynthetic gene cluster colocated in the symbiont genome that is conserved among all symbiotic Teredinibacter isolates. We subsequently identified extracellular metabolites associated with the QS regulon, including ones linked to the conserved biosynthetic gene cluster, using mass spectrometry-based molecular networking. Our results demonstrate that QS plays an important role in regulating secondary metabolism in this shipworm symbiont. This information provides a step toward deciphering the molecular details of the relationship between these symbionts and their hosts. Furthermore, because shipworm symbionts harbor vast yet underexplored biosynthetic potential, understanding how their secondary metabolism is regulated may aid future drug discovery efforts using these organisms.
  • Diversity of dinoflagellate symbionts (zooxanthellae) in a host individual
    Carlos, A. A.; Baillie, B. K.; Maruyama, T. (Inter-Research Science Center, 2000)
    Zooxanthellae are phototrophic dinoflagellates that exist in symbiosis with a variety of marine invertebrates. The traditional view of zooxanthella-invertebrate symbioses suggests that individual hosts harbor taxonomically homogeneous symbiont populations. To assess the diversity of the zooxanthella assemblage inhabiting an individual host, zooxanthellae from 6 species of clam (Tridacna gigas, T. squamosa, T. crocea, Hippopus hippopus, H. porcellanus and Corculum cardissa) and 1 species of sea anemone (Aiptasia sp.) were studied using temperature-gradient gel electrophoresis (TGGE), coupled with polymerase chain reaction (PCR) using zooxanthella-specific primers that were designed to target hypervariable regions of the small subunit ribosomal RNA (ssrRNA) gene. Results revealed that 1 clam may harbor 2 or more genotypically distinct zooxanthellae, with 1 or more dominant taxa occurring at a time. The clams studied associated with at least 4 zooxanthellar taxa. Nucleotide sequencing of the TGGE bands and phylogenetic reconstruction revealed that the zooxanthellar taxa in clams were Symbiodinium spp.; 1 was identical to previously cultured clam symbiont isolates, 1 appeared identical to a previously studied unculturable clam symbiont, and the other 2 clams represented novel strains of Symbiodinium. Individual Aiptasia sp. harbored only 1 zooxanthellar taxon, which had a ssrRNA sequence identical to that of S. pulchrorum, previously isolated from Aiptasia pulchella. This study has shown that individual tridacnid and cardiid clams can harbor heterogeneous zooxanthellae.