menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 6 of 6
  • Characterization of Alexandrium tamutum (Dinophyceae) isolated from Philippine waters, with the rare detection of paralytic shellfish toxin
    Benico, Garry; Azanza, Rhodora (Association of Systematic Biologists of the Philippines, 2022-04-01)
    Alexandrium tamutum M.Montressor, A.Beran & U.John is a non-toxic, bloom-forming dinoflagellate species commonly reported in temperate waters. In this study, 8 cultures of A. tamutum established from Bolinao Channel and Manila Bay, Philippines were characterized in terms of their morphology, phylogeny and toxicity. Cells were roundish, measuring 25.5 –29.84 µm long and 26.2–28.45 µm wide. The nucleus is equatorially elongated and located at the center of the cell. The chloroplasts are numerous, golden brown in color and radially arranged. Thecal tabulation is typical of Alexandrium: APC, 4', 6'', 6c, 6s, 5''', 2''''. Shape of the taxonomically informative thecal plates such as sixth precingular plate (6'') and posterior sulcal plate (sp) was similar to A. tamutum, which confirms the species identity. However, the presence of anterior and posterior attachment pores observed in our cultured isolates is the first case in this species. Molecular phylogeny inferred from LSU rDNA and ITS supports our identification by forming a well-supported clade composed of A. tamutum strains from other geographic regions. HPLC analysis showed that A. tamutum is generally non-toxic except for strain ATC9 which has low amount of decarbamoylsaxitoxin (dcSTX), resulting to a toxicity of 0.07 fmole STX eq per cell. The present study reports the first verified occurrence of Philippine A. tamutum with reliable morphological and molecular information, including the first record in Manila Bay and first detection of PST in one strain at a certain culture period.
    We acknowledge the Department of Science and Technology Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST PCAARRD) and the University of the Philippines-The Marine Science Institute (UP-MSI) for the funding support. We are grateful for the assistance of Joshua Vacarizas, Keith Pinto and Jenelyn Mendoza for the molecular and toxicity analyses of the cultures. We also acknowledge Estrelita Flores, Emelita Eugenio and Jayson Orpeza for their assistance during the fieldwork and other logistical support.
  • The harmful raphidophyte Chattonella (Raphidophyceae) in Western Pacific: Its red tides and associated fisheries damage over the past 50 years (1969–2019)
    Lum, Wai Mun; Benico, Garry; Doan-Nhu, Hai; Furio, Elsa; Leaw, Chui Pin; Leong, Sandric Chee Yew; Lim, Po Teen; Lim, Weol Ae; Lirdwitayaprasit, Thaithaworn; Lu, Songhui; Nguyen, Nguyen Van; Orlova, Tatiana Yu.; Rachman, Arief; Sakamoto, Setsuko; Takahashi, Kazuya; Teng, Sing Tung; Thoha, Hikmah; Wang, Pengbin; Yñiguez, Aletta T.; Wakita, Kazumi; Iwataki, Mitsunori (Elsevier, 2021-07)
    Red tides and associated fisheries damage caused by the harmful raphidophyte Chattonella were reassessed based on the documented local records for 50 years to understand the distribution and economic impacts of the harmful species in the Western Pacific. Blooms of Chattonella with fisheries damage have been recorded in East Asia since 1969, whereas they have been only recorded in Southeast Asia since the 1980s. Occurrences of Chattonella have been documented from six Southeast Asian countries, Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet Nam, with mass mortalities mainly of farmed shrimp in 1980–1990s, and farmed fish in 2000–2010s. These occurrences have been reported with the names of C. antiqua, C. marina, C. ovata, C. subsalsa and Chattonella sp., owing to the difficulty of microscopic species identification, and many were not supported with molecular data. To determine the distribution of C. marina complex and C. subsalsa in Southeast Asia, molecular phylogeny and microscopic observation were also carried out for cultures obtained from Indonesia, Malaysia, Japan, Philippines, Russia, Singapore and Thailand. The results revealed that only the genotype of C. marina complex has been detected from East Asia (China, Japan, Korea and Russia), whereas both C. marina complex (Indonesia and Malaysia) and C. subsalsa (Philippines, Singapore and Thailand) were found in Southeast Asia. Ejection of mucocysts has been recognized as a diagnostic character of C. subsalsa, but it was also observed in our cultures of C. marina isolated from Indonesia, Malaysia, Japan, and Russia. Meanwhile, the co-occurrences of the two harmful Chattonella species in Southeast Asia, which are difficult to distinguish solely based on their morphology, suggest the importance of molecular identification of Chattonella genotypes for further understanding of their distribution and negative impacts.
    We thank Drs Yuuki Kosaka, Winnie Lik Sing Lau, Ing Kuo Law and Toh Hii Tan for their sampling assistances. We thank Dr. Sadaaki Yoshimatsu for providing a culture strain TAI-93, and Drs Mineo Yamaguchi and Haruo Yamaguchi for support on maintenance and rDNA analysis of the culture. This work was carried out under international collaboration of the IOC/WESTPAC-HAB project and Core-to-Core Program (B. Asia-Africa Science Platforms) of the Japan Society for the Promotion of Science (JSPS). This work was partially supported by Japanese JSPS Kakenhi 19H03027 and 19KK0160 (MI), Malaysian MOHE HICOE IOES and FRGS (PTL), Vietnamese VAST NVCC17.02/21-21 (HD-N), and the Japanese Fund-in-Trust (MEXT).
  • Thecal tabulation, body scale morphology and phylogeny of Heterocapsa philippinensis sp. nov. (Peridiniales, Dinophyceae) from the Philippines
    Benico, Garry; Lum, Wai Mun; Takahashi, Kazuya; Yñiguez, Aletta T.; Iwataki, Mitsunori (Elsevier, 2021-08)
    The thecal tabulation and body scale structure of the marine armoured dinoflagellate Heterocapsa, isolated from Philippines, were examined using LM, SEM and TEM, and its phylogenetic position was inferred from ITS and LSU rDNA sequences. Cells were ovoid and the plate tabulation (Po, cp, X, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′) was consistent with most Heterocapsa species. The second anterior intercalary plate (2a) had a circular pattern with a thick marginal border free of pores. The nucleus was longitudinally elongated and curved, and located at the dorsal side of the cell. Discoid lobes of brownish chloroplast were peripherally distributed, and a pyrenoid was positioned at the centre. The triradiate body scales, measuring 250–300 nm in diameter, consisted of a roundish basal plate with six radiating ridges, nine peripheral uprights/spines, and three radiating spines. These components were identical to those of H. pseudotriquetra and H. steinii, except for the roundish outline of basal plate. Molecular phylogeny showed that the species clustered with H. pseudotriquetra and H. steinii. This species was differentiated from all other Heterocapsa species in the sausage-shaped nucleus and circular pattern on the 2a plate. This study proposed a novel species Heterocapsa philippinensis sp. nov. for the isolate.
  • Manzaea minuta gen. & comb. nov. (Scytosiphonaceae, Phaeophyceae) from the tropical Northwestern Pacific Ocean
    Santiañez, Wilfred John E.; Kogame, Kazuhiro (Philippine Journal of Systematic Biology, 2022-07-11)
    Recent molecular-assisted taxonomic studies on the brown algal genus Hydroclathrus has resulted in discoveries of new taxa in the family Scytosiphonaceae, both at the genus and species level. However, phylogenetic studies on Hydroclathrus based on wide geographical sampling also suggested that the genus is not monophyletic. That is, one of the recently described species Hydroclathrus minutus is consistently segregated from the Hydroclathrus main clade. We propose here to segregate H. minutus from the brown algal genus Hydroclathrus and establish the new monotypic genus Manzaea (i.e., Manzaea minuta gen. & comb. nov.) based on information on molecular phylogenetics and morpho-anatomy. Morphologically, M. minuta is similar to Hydroclathrus and Tronoella in having clathrate (net-like) and spreading thalli but is differentiated from the latter two genera in having membranous thalli that are sometimes interadhesive resulting in portions of the thallus forming amorphous clumps. Additionally, Manzaea is distinguished from both clathrate genera in having thick-walled medullary cells and short closely arranged quadriseriate plurangia. Phylogenetic analyses (Maximum Likelihood and Bayesian Inference) based on single (plastidial psaA and rbcL genes) and concatenated (cox3 + psaA + rbcL) genes showed that M. minuta is consistently segregated from the highly supported clade of Hydroclathrus species and often clustering with Tronoella and/or Rosenvingea. Our proposal further increases the diversity of monotypic genera in the Scytosiphonaceae and underscores the need to conduct further studies on tropical seaweed biodiversity.
    WJES thanks Dr. Gavino C. Trono, Jr. and Dr. Edna T. Ganzon-Fortes for the inspiration and encouragement to conduct seaweed biodiversity and systematics research. WJES is funded by the University of the Philippines through the Balik PhD Program of the Office of the Vice President for Academic Affairs (OVPAA-BPhD-2018-05), the University of the Philippines Diliman through the In-house research grant of the Marine Science Institute, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Government of Japan under the Monbukagakusho Scholarship Grant. WJES also acknowledges the support of the Department of Science and Technology (DOST)-Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) of the Government of the Philippines through the DOST Balik Scientist Program.
  • Thumbnail Image
    Two hidden mtDNA-clades of crown-of-thorns starfish in the Pacific Ocean
    Yasuda, Nina; Inoue, Jun; Hall, Michael R.; Nair, Manoj R.; Adjeroud, Mehdi; Fortes, Miguel D.; Nishida, Mutsumi; Tuivavalagi, Nat; Ravago-Gotanco, Rachel; Forsman, Zac H.; Soliman, Taha; Koyanagi, Ryo; Hisata, Kanako; Motti, Cherie A.; Satoh, Noriyuki (Frontiers Media SA, 2022-04-27)
    Recurring outbreaks of crown-of-thorns starfish (COTS) severely damage healthy corals, especially in the Western Pacific Ocean. To obtain a better understanding of population genetics of COTS and historical colonization across the Pacific Ocean, complete mitochondrial genomes were sequenced from 243 individuals collected in 11 reef regions. Our results indicate that Pacific COTS (Acanthaster cf. solaris) comprise two major clades, an East-Central Pacific (ECP) clade and a Pan-Pacific (PP) clade, separation of which was supported by high bootstrap value. The ECP clade consists of COTS from French Polynesia, Fiji, Vanuatu and the Great Barrier Reef (GBR). The Hawaii population is unique within this clade, while California COTS are included in EPC clade. On the other hand, the PP clade comprises multiple lineages that contain COTS from Vietnam, the Philippines, Japan, Papua New Guinea, Micronesia, the Marshall Islands, GBR, Vanuatu, Fiji and French Polynesia. For example, a lineage of the PP clade, which has the largest geographic distribution, includes COTS from all of these locations. These results suggest two alternative histories of current geographic distributions of COTS in the Pacific Ocean, an ECP clade ancestry or Western Pacific clade ancestry. Although further questions remain to be explored, this discovery provides an evolutionary context for the interpretation of COTS population structure which will aid future coral reef research in the Pacific Ocean, and ultimately improve reef management of COTS.
    We thank the following people for their help with sample collection: Dr. Hugh Sweatman and the AIMS Bioresources Library for GBR samples, Dr. Molly Timmers for Hawaiian samples, Geoff Jones and Jeff Kinch for Papua New Guinean samples, Monal Lal for Fijian samples, Christina Shaw for Vanuatu samples, Hoang Dinh Chieu for Vietnamese samples, and Hiromitsu Ueno for Japanese samples. The DNA Sequencing Section and IT section of OIST are acknowledged for its expert help with genome sequencing and bioinfomatic analysis. Last, but not least, we acknowledge the traditional owners of the lands and sea country on which this research took place.
  • Thumbnail Image
    The complete mitochondrial genome of a wild-collected Kappaphycus malesianus (Solieriaceae, Rhodophyta)
    Crisostomo, Bea A.; Dumilag, Richard V.; Roleda, Michael Y.; Lluisma, Arturo O. (Taylor & Francis, 2023-03-04)
    Kappaphycus malesianus is a red seaweed farmed primarily for its carrageenan, a polysaccharide important in the food and pharmaceutical industries. Among the commercially cultivated Kappaphycus species, only K. malesianus has no mitogenome data available. Here, we assembled the mitochondrial genome of K. malesianus from next-generation sequencing data. The circular mitogenome consisted of 25,250 base pairs (bp) with a GC content of 30.25%. These values were comparable to previously sequenced solieriacean mitogenomes. Structural features, such as the stem-loop and hairpin, which were previously reported in other rhodophytes mitochondrial DNA, were also identified. The annotated genes (24 protein-coding genes, 24 tRNA genes, and 2 rRNA genes) were arranged in an order similar to the other available solieriacean mitogenomes. Lastly, phylogenetic analysis using 23 predicted protein domains showed the sister relationship of K. malesianus with other Kappaphycus species.
    The authors are grateful to Z.-Z. Aguinaldo, S. Damsik, and J. Turong for aiding during laboratory and field works. The authors also acknowledge the LGU of Sitangkai, Tawi-Tawi for granting permission for the collection activities. This is contribution no. 495 from the University of the Philippines the Marine Science Institute (UPMSI), Diliman, Quezon City.