National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
Search Results
- Bacterial community assembly, succession, and metabolic function during outdoor cultivation of Microchloropsis salinaMorris, Megan M.; Kimbrel, Jeffrey A.; Geng, Haifeng; Tran-Gyamfi, Mary Bao; Yu, Eizadora T.; Sale, Kenneth L.; Lane, Todd W.; Mayali, Xavier (American Society for Microbiology, 2022-08-31)
Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides.
IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.
- Iron availability modulates the response of endosymbiotic dinoflagellates to heat stressReich, Hannah G.; Tu, Wan-Chen; Rodriguez, Irene B.; Chou, Yalan; Keister, Elise F.; Kemp, Dustin W.; LaJeunesse, Todd C.; Ho, Tung-Yuan (2020)Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef-building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe’) to limiting (50 pM Fe’) under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe′ at 26–28°C vs. 250 pM Fe′ at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga’s response to thermal stress suggests the importance of trace metals to the health of coral-algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.
- Metamorphic success and production cost of Holothuria scabra reared on microalgae concentrates compared with live microalgaeGarpa, Tomilyn Jan; Caasi, Olivier Josh C.; Juinio–Meñez, Marie Antonette (Bureau of Fisheries and Aquatic Resources, 2024-03-07)The production of live microalgae poses challenges for the expansion of sandfish hatcheries, hindered by high costs and limited technical resources. In relation to this, the use of three imported commercial concentrates (Instant Algae®) - TW1200 (Thalassiosira weisflogii), TISO1800 (Isochrysis sp.), and Shellfish1800 (mixed diatom) - were compared with live Chaetoceros calcitrans (CC). The diet efficacy was evaluated based on larval development, growth, and survival to late auricularia (LA) with hyaline spheres (HS), and the number of post-settled juveniles. Larvae reared with TW did not progress beyond LA, while those fed CC exhibited earlier LA development, larger sizes (1028.43 ± 19.38 µm), and significantly more post–settled juveniles (9,268 ± 2,183.79) compared to SHELL and TISO. Although TISO larvae reached a larger size during LA (855.7 ± 62.67 µm), SHELL resulted in a higher number of post-settled juveniles. The better performance of CC and SHELL may be attributed to their higher carbohydrate content. Despite SHELL and TISO having lower juvenile yields and longer feeding durations, the estimated cost per juvenile using SHELL, TISO, and CC were PHP 2.00, PHP 11.77, and PHP 0.52, respectively. Results showed that microalgae concentrates are not a cost-effective option under the studied conditions. The potential use of microalgae concentrates as supplemental feeds and further research to develop the use of local microalgae concentrates to sandfish larval culture are discussed.This study was funded by Australian Centre for International Agricultural Research (ACIAR) through the project FIS/2016/122 “Increasing technical skills supporting community-based sea cucumber production in Vietnam and the Philippines” and administrative support from the Marine Environment and Resources Foundation (MERF), Inc. We would also like to thank the Bolinao Marine Laboratory of the University of the Philippines Marine Science Institute for the use of facilities and equipment. We are grateful to our collaborators, Jon Altamirano and Roselyn Noran, and SEAFDEC AQD for guidance on the methods used for preparation and protocols of microalgae concentrate feeding regimen. Special thanks to JayR Gorospe for comments on the earlier draft and Jerwin Baure for copyediting this manuscript. The assistance of Mr. Tirso Catbagan in the culture of larvae and maintenance of the experimental tanks was invaluable during the experiment.