National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
4 results
Search Results
- Strong genetic structure and limited gene flow among populations of the tropical seagrass Thalassia hemprichii in the PhilippinesNakajima, Yuichi; Matsuki, Yu; Fortes, Miguel D.; Uy, Wilfredo H.; Campos, Wilfredo L.; Nadaoka, Kazuo; Lian, Chunlan (MDPI AG, 2023-02-05)Seagrasses are marine angiosperms, and seagrass beds maintain the species diversity of tropical and subtropical coastal ecosystems. For proper understanding, management and conservation of coastal ecosystems, it is essential to understand seagrass population dynamics. Population genetic studies can cover large geographic scales and contribute to a comprehensive understanding of reproductive dynamics and potential dispersal among locations. The clonal and genetic diversity and genetic connectivity of Thalassia hemprichii in the Philippines were estimated by a population genetics approach. The geographic scale of this study has a direct distance of approximately 1600 km. Although high clonal diversity was found in some sites (R = 0.07–1.00), both sexual and asexual reproduction generally maintains separate populations. Genetic diversity is not definitely correlated with latitude, and genetic differentiation is significant in all pairs of sites (FST = 0.026–0.744). Complex genetic structure was found in some regions, even at a fine geographic scale. The migration of fruits and seedlings was elucidated as an infrequent and stochastic event. These results suggest the necessity for the conservation of this species due to a deficiency in migrants from external regions.We thank members of CECAM project.
- Complex patterns of genetic structure in the sea cucumber Holothuria (Metriatyla) scabra from the Philippines: implications for aquaculture and fishery managementLal, Monal M.; Macahig, Deo A. S.; Juinio-Meñez, Marie A.; Altamirano, Jon P.; Noran-Baylon, Roselyn; de la Torre-de la Cruz, Margarita; Villamor, Janine L.; Gacura, Jonh Rey L.; Uy, Wilfredo H.; Mira-Honghong, Hanzel; Southgate, Paul C.; Ravago-Gotanco, Rachel (Frontiers Media SA, 2024-06-04)The sandfish Holothuria (Metriatyla) scabra, is a high-value tropical sea cucumber harvested from wild stocks for over four centuries in multi-species fisheries across its Indo-Pacific distribution, for the global bêche-de-mer (BDM) trade. Within Southeast Asia, the Philippines is an important centre of the BDM trade, however overharvesting and largely open fishery management have resulted in declining catch volumes. Sandfish mariculture has been developed to supplement BDM supply and assist restocking efforts; however, it is heavily reliant on wild populations for broodstock supply. Consequently, to inform fishery, mariculture, germplasm and translocation management policies for both wild and captive resources, a high-resolution genomic audit of 16 wild sandfish populations was conducted, employing a proven genotyping-by-sequencing approach for this species (DArTseq). Genomic data (8,266 selectively-neutral and 117 putatively-adaptive SNPs) were used to assess fine-scale genetic structure, diversity, relatedness, population connectivity and local adaptation at both broad (biogeographic region) and local (within-biogeographic region) scales. An independent hydrodynamic particle dispersal model was also used to assess population connectivity. The overall pattern of population differentiation at the country level for H. scabra in the Philippines is complex, with nine genetic stocks and respective management units delineated across 5 biogeographic regions: (1) Celebes Sea, (2) North and (3) South Philippine Seas, (4) South China and Internal Seas and (5) Sulu Sea. Genetic connectivity is highest within proximate marine biogeographic regions (mean Fst=0.016), with greater separation evident between geographically distant sites (Fst range=0.041–0.045). Signatures of local adaptation were detected among six biogeographic regions, with genetic bottlenecks at 5 sites, particularly within historically heavily-exploited locations in the western and central Philippines. Genetic structure is influenced by geographic distance, larval dispersal capacity, species-specific larval development and settlement attributes, variable ocean current-mediated gene flow, source and sink location geography and habitat heterogeneity across the archipelago. Data reported here will inform accurate and sustainable fishery regulation, conservation of genetic diversity, direct broodstock sourcing for mariculture and guide restocking interventions across the Philippines.
- Genetic diversity and population connectivity of the greenblotch parrotfish (Scarus quoyi Valenciennes, 1840) within southern Mindanao inferred from mitochondrial 16S rRNALabrador, Kevin; Fortaleza, Maybelle; Cabasan, Joey; Elumba, Merlene; Nañola, Cleto (Science and Technology Information Institute, 2022-10-03)A genetic assessment was done on the greenblotch parrotfish (Scarus quoyi Valenciennes, 1840) in three bays within southern Mindanao, Philippines. Mitochondrial 16S rRNA recovered 12 haplotypes, one of which was dominant in all sites. Despite the reported phenotypic variation from previous assessments, there was neither evidence of genetic structure (global Φst = 0.012, p = 0.13) nor isolation by distance (r = 0.05, p = 0.50). Genetic diversity was also low (Hglobal = 0.472; πglobal = 0.13%), with ~ 77% of haplotype diversity accounted for with just 69 samples. While connectivity suggests continuous larval exchange within southern Mindanao owing to the species’ high dispersal potential, low genetic diversity implies reduced effective population size, probably due to recent bottlenecks (e.g. overfishing, habitat destruction). Although this study provides baseline genetic information on the local population, inferences are considerably limited by the genetic marker used and the spatial scale under investigation. A thorough understanding of the population will be possible if the entire habitat range of the species is assessed using markers with high resolving power, such as the hypervariable mitochondrial control region, microsatellites, or genome-wide single nucleotide polymorphisms (SNPs).This project was funded by the DOST-PCAARRD (Department of Science and Technology–Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development) through the projects titled “DNA Barcoding and Genetic Diversity of Selected Marine Fishes along the North Bifurcation of the North Equatorial Current (NEC)” and “DNA Barcoding of Selected Marine Fishes in Davao and Sulu Archipelago (MINDA).” Sample collection was covered by the DARETO (Discovery-Applied Research and Extension for Trans/Inter-disciplinary Opportunities) research grant under CHED (Commission on Higher Education) through the project entitled “Bioeconomic Assessment and Modelling of Reef Fisheries and Sustainable Harvest Project”. We would like to thank Junissa M. Consuegra, Joemarie J. Lanutan, and Jodi Eugenia Lourdes F. del Fierro for their assistance in sample collection and laboratory work.
- Genetic structure of giant clam (Tridacna derasa) populations from reefs in the Indo-PacificMacaranas, J. M.; Ablan, C. A.; Pante, M. J. R.; Benzie, J. A. H.; Williams, S. T. (Springer, 1992-06)Large genetic differences were observed among the Great Barrier Reef (GBR), Fiji and Philippine populations of Tridacna derasa (Roding) sampled in 1989 and 1990 (Nei's unbiased genetic distance, D,=0.137 to 0.341). This result contrasted strongly with the low genetic distance (D=0.032) reported previously for the giant clam T. maxima over similar geographical scales. No significant genetic differentiation was observed among most populations from the GBR (mean D=0.007), consistent with the high gene exchange expected in this highly connected reef system. However, significant differentiation resulting from differences in the frequencies of less common alleles between the North-Central GBR and South GBR (Swain region) were observed. Historical isolation of blocks of the Central Indo-West Pacific from the GBR and present-day restrictions to gene exchange between the GBR, Fiji and the Philippines as a result of oceanographic current patterns, were thought to be responsible for the high degree of genetic differentiation of T. derasa populations. The relevance of these findings to clam mariculture and reef restocking are briefly discussed.