menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Increased coral larval supply enhances recruitment for coral and fish habitat restoration
    Harrison, Peter L.; dela Cruz, Dexter W.; Cameron, Kerry A.; Cabaitan, Patrick C. (Frontiers Media SA, 2021-12-01)
    Loss of foundation reef-corals is eroding the viability of reef communities and ecosystem function in many regions globally. Coral populations are naturally resilient but when breeding corals decline, larval supply becomes limiting and natural recruitment is insufficient for maintaining or restoring depleted populations. Passive management approaches are important but in some regions they are proving inadequate for protecting reefs, therefore active additional intervention and effective coral restoration techniques are needed. Coral spawning events produce trillions of embryos that can be used for mass larval rearing and settlement on degraded but recoverable reef areas. We supplied 4.6 million Acropora tenuis larvae contained in fine mesh enclosures in situ on three degraded reef plots in the northwestern Philippines during a five day settlement period to initiate restoration. Initial mean larval settlement was very high (210.2 ± 86.4 spat per tile) on natural coral skeleton settlement tiles in the larval-enhanced plots, whereas no larvae settled on tiles in control plots. High mortality occurred during early post-settlement life stages as expected, however, juvenile coral survivorship stabilised once colonies had grown into visible-sized recruits on the reef by 10 months. Most recruits survived and grew rapidly, resulting in significantly increased rates of coral recruitment and density in larval-enhanced plots. After two years growth, mean colony size reached 11.1 ± 0.61 cm mean diameter, and colonies larger than 13 cm mean diameter were gravid and spawned, the fastest growth to reproductive size recorded for broadcast spawning corals. After three years, mean colony size reached 17 ± 1.7 cm mean diameter, with a mean density of 5.7 ± 1.25 colonies per m–2, and most colonies were sexually reproductive. Coral cover increased significantly in larval plots compared with control plots, primarily from A. tenuis recruitment and growth. Total production cost for each of the 220 colonies within the restored breeding population after three years was United States $17.80 per colony. A small but significant increase in fish abundance occurred in larval plots in 2018, with higher abundance of pomacentrids and corallivore chaetodontids coinciding with growth of A. tenuis colonies. In addition, innovative techniques for capturing coral spawn slicks and larval culture in pools in situ were successfully developed that can be scaled-up for mass production of larvae on reefs in future. These results confirm that enhancing larval supply significantly increases settlement and coral recruitment on reefs, enabling rapid re-establishment of breeding coral populations and enhancing fish abundance, even on degraded reef areas.
    We thank the Australian Centre for International Agricultural Research (ACIAR) for funding this research: grant ACIAR/FIS/2014/063 to PH, PC and J. Bennett. Thanks to ACIAR staff Chris Barlow, Ann Fleming, and Mai Alagcan for their ongoing support. Sincere thanks to the Galsim Family for use of Tanduyong Island as a field research base during the coral restoration fieldwork. We also thank staff and students at the Bolinao Marine Laboratory, Marine Science Institute, University of the Philippines, Diliman for their assistance with reef work: Elizabeth Gomez, Charlon Ligson, Rickdane Gomez and Fernando Castrence (including fish surveys), Marcos Ponce, Joey Cabasan, Sheldon Boco, Gabriel de Guzman, Albert Ponce, and Allan Abuan. We also thank Grant Cameron for field support and helping design, build and refine the prototype floating spawn catcher frames in 2016 and 2017.
  • Thumbnail Image
    Reef location and season, but not recruitment substrate contour and composition, affect coral recruitment patterns
    dela Cruz, Dexter W.; Harrison, Peter L. (Elsevier, 2024)
    Most studies have quantified coral recruitment using recruitment tiles temporarily deployed on reefs. However, the wide range of tile types used in different studies potentially influences recruitment patterns thereby hindering accurate comparisons among reef areas. We examined the effect of different tile types with different surface structure and composition on spatial (reef locations) and temporal (season) patterns of coral recruitment in the northwestern Philippines. Dead coral skeleton, terracotta, and fibre-cement tiles were deployed and retrieved quarterly over a 15-month period. In contrast to previous studies, patterns of standardized density and composition of recruits were consistent among tile types. Recruits varied spatially and were highest in Caniogan reef, followed by Cory reef and Lucero reef, suggesting that coral recruitment in the Bolinao-Anda Reef Complex (BARC) is influenced by reef location and existing coral cover. Highest recruitment was also found during the peak coral spawning season. The results of this study contrast with some previous reports which indicate that coral recruitment patterns are strongly influenced by recruitment substrate types. Our study suggests that once sufficient biological conditioning of the tile surfaces has occurred, the microbial and algal community present on the different tile surfaces are similarly conducive to larval settlement of some coral taxa. © 2024 The Authors