menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 3 of 3
  • Dissolved and particulate carbon export from a tropical mangrove‐dominated riverine system
    Ray, Raghab; Miyajima, Toshihiro; Watanabe, Atsushi; Yoshikai, Masaya; Ferrera, Charissa M.; Orizar, Iris; Nakamura, Takashi; San Diego‐McGlone, Maria Lourdes; Herrera, Eugene C.; Nadaoka, Kazuo (Wiley, 2021-09-24)
    Despite being a major component in the mangrove carbon (blue carbon) budget, “outwelling” flux (or export to the sea) has gained little attention relative to other biogeochemical fluxes and reservoir carbon stock estimations. This study aims to estimate lateral exchange fluxes of dissolved and particulate organic carbon (DOC, POC) and dissolved inorganic carbon (DIC) from the watershed through a microtidal mangrove-dominated estuary to the coastal sea in Panay Island, Philippines. Along the estuarine transect, consistent addition of DOC, DIC, and POC at higher salinities were attributed to mangrove organic matter input. Upstream groundwater input (carbonate weathering) and downstream mangrove organic matter decomposition (possibly sulfate reduction) were the main controls on DIC. DOC corresponded to relatively pure mangrove sources in creek water, while POC was a mixture of detrital and algal organic matter. The mangrove system acted as net exporter of carbon to the sea in both dry and wet seasons. From short-term observations, outwelling fluxes of mangrove-derived DOC, DIC, and POC contributed 27–53%, 8–31%, and 42%, respectively, to their estuarine outflow. Unlike other studies, such low percentage for DIC might result from other external nonmangrove input (e.g., watershed carbonate weathering). Overall estuarine carbon flux was dominated by DIC (90–95%) with only minor contribution from DOC. The approach utilized in this study to estimate lateral carbon flux specific to a small mangrove setting can be useful in delineating blue carbon budgets that avoid geographical and methodological biases.
    We are grateful to the Japan International Cooperation Agency (JICA) and Japan Science and Technology Agency (JST) through the Science and Technology Research Partnership for Sustainable Development Program (SATREPS) for financially supporting the Project “Comprehensive Assessment and Conservation of Blue Carbon Ecosystems and their Services in the Coral Triangle (BlueCARES).” We are indebted to Dr Gerd Gleixner and Steffen Ruehlow (MPI-Jena, Germany) for providing support in δ13DOC analyses, and Dr Naoko Morimoto for POM analyses. We sincerely thank Dr Kenji Ono for sharing fine root production data. We are thankful to Dr Ariel Blanco (Department of Geodetic Engineering, UP Diliman) for providing delineation of mangrove area and Dr. Enrico C. Paringit, program leader of Phil-LiDAR 1, for providing the LiDAR products for map preparation. We thank Jeffrey Munar, Jesus Abad, John Michael Aguilar, Dominic Bautista, Bryan C. Hernandez and Mr Tsuyoshi Kanda for their assistance during field surveys. We are grateful for the overall support given by the University of the Philippines, Diliman and Aklan State University to the project. Finally, we thank the Journal Editor, Associate Editor, and three reviewers for their valuable comments and corrections on the manuscript.
  • A multi-framework analysis of stakeholders’ perceptions in developing a localized blue carbon ecosystems strategy in Eastern Samar, Philippines
    Quevedo, Jay Mar D.; Ferrera, Charissa M.; Faylona, Marie Grace Pamela G.; Kohsaka, Ryo (Springer Science and Business Media LLC, 2024-01-25)
    Blue carbon ecosystems (BCEs) are vital for global climate change mitigation and offer diverse local ecosystem co-benefits. Despite existing literatures on integrating national and international BCE agendas at the local level, the development and implementation of localized BCE strategies often lag behind. To provide insights on this knowledge gap, we present a case study conducted in Eastern Samar, Philippines. Employing a multi-framework analysis- encompassing DPSIR (drivers, pressures, state, impact, responses), SOAR (strengths, opportunities, aspirations, results), and PESTLE (political, economic, social, technological, legal, environmental) frameworks, stakeholder perceptions collected from focus group discussions highlight issues and challenges in developing and implementing a BCE strategy. Findings reveal that the aftermath of Typhoon Haiyan in 2013 in the study sites stimulated conservation efforts and raised awareness, but governance structures and policy enforcement influence the success and longevity of management and conservation efforts. Through the integration of multiple frameworks, this study outlined a potential localized BCE strategy, emphasizing both internal priorities such as stakeholder engagement and alternative livelihoods and external priorities related to policy and technological supports. While developed based on a specific case study in the Philippines, the proposed strategy is presented in a general manner, enabling its potential replication in other provinces in the Philippines or in countries with similar geographic settings.
  • Thumbnail Image
    Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
    Ray, Raghab; Suwa, Rempei; Miyajima, Toshihiro; Munar, Jeffrey; Yoshikai, Masaya; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo (Copernicus GmbH, 2023-03-03)
    Among the many ecosystem services provided by mangroves, the sequestration of large amounts of organic carbon (OC) in marine ecosystems (also known as “blue carbon”) has given these unique ecological environments enormous global attention. While there are many studies on the blue carbon potential of intact mangroves (i.e., naturally growing), there have been very few studies on restored mangroves (i.e., planted). This study aims to address this knowledge gap by examining the sediment development process during the early colonization (rehabilitation) of mangroves in an OC-poor estuary in Panay Island, Philippines. Based on source apportionment of multiple end-members in the sedimentary organic matter, the contribution of mangrove plant material was higher at the older sites compared to the younger sites or bare sediments where there is a higher contribution of riverine input. A clear increasing gradient according to mangrove development was observed for bulk OC (0.06–3.4 µ mol g−1, porewater OC (292–2150 µmol L−1, sedimentary OC stocks (3.13–77.4 Mg C ha−1), and OC loading per surface area (7–223 µmol m−2). The estimated carbon accumulation rates (6–33 mol m−2 yr−1) based on chronosequence are within the global ranges and show an increasing pattern with the age of mangroves. Hence, the sediments of relatively young mangrove forests appear to be a significant potential C sink, and short-term chronosequence-based observations can efficiently define the importance of mangrove restoration programs as a potential carbon sequestration pathway.
    We are grateful to the Japan International Cooperation Agency (JICA) and the Japan Science and Technology Agency (JST) through the Science and Technology Research Partnership for Sustainable Development (SATREPS) program for financially supporting the project Comprehensive Assessment and Conservation of Blue Carbon Ecosystems and their Services in the Coral Triangle (Blue CARES). We thank Jesus Abad, John Michael Aguilar, Dominic Bautista, Bryan C. Hernandez, and Tsuyoshi Kanda for their assistance during field surveys. We are grateful for the overall support given to the project by the University of the Philippines, Diliman, and Aklan State University. We are thankful to our Blue CARES colleague Charissa Ferrera for the support in language edits. Finally, authors sincerely thank AE (Jack Middelburg) and the reviewers for their constructive comments that have greatly improved the revised version of the manuscript.