National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
2 results
Search Results
- Microscopic stages of North Atlantic Laminaria digitata (Phaeophyceae) exhibit trait-dependent thermal adaptation along latitudesSchimpf, Nele M.; Liesner, Daniel; Franke, Kiara; Roleda, Michael Y.; Bartsch, Inka (Frontiers Media SA, 2022-06-17)Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southern-most population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata.We would like to thank A. Wagner for the sampling and clonal isolation of kelp material and technical assistance in the laboratory, C. Daniel for support with the image analysis, L. Foqueau for the SST data, C. Gauci for statistical advice and S. DeAmicis for supervision in this BSc Thesis.
- Cryptic haploid stages in the life cycle of Leathesia marina (Chordariaceae, Phaeophyceae) under in vitro culturePoza, Ailen M.; Santiañez, Wilfred John E.; Croce, M. Emilia; Gauna, M. Cecilia; Kogame, Kazuhiro; Parodi,Elisa R. (2020-05-28)We evaluated the life cycle of Leathesia marina through molecular analyses, culture studies, morphological observations, and ploidy measurements. Macroscopic sporophytes were collected from two localities in Atlantic Patagonia and were cultured under long-day (LD) and short-day (SD) conditions. Molecular identification of the microscopic and macroscopic phases was performed through the cox3 and rbcL genes and the phylogeny was assessed on the basis of single gene and concatenated datasets. Nuclear ploidy of each phase was estimated from the DNA contents of individual nuclei through epifluorescence microscopy and flow cytometry. Molecular results confirmed the identity of the Argentinian specimens as L. marina and revealed their conspecificity with L. marina from New Zealand, Germany, and Japan. The sporophytic macrothalli (2n) released mitospores from plurilocular sporangia, which developed into globular microthalli (2n), morphologically similar to the sporophytes but not in size, constituting a generation of small diploid thalli, with a mean fluorescent nuclei cross-sectional area of 3.21 ± 0.7 μm2. The unilocular sporangia released meiospores that developed two morphologically different types of microthalli: erect branched microthalli (n) with a nuclear area of 1.48 ± 0.07 µm2 that reproduces asexually, and prostrate branched microthalli (n) with a nuclear area of 1.24 ± 0.10 µm2 that reproduces sexually. The prostrate microthalli released gametes in LD conditions, which merged and produced macroscopic thalli with a nuclear cross-sectional area of 3.45 ± 0.09 µm2. Flow cytometry confirmed that the erect and prostrate microthalli were haploid and that the globular microthalli and macrothalli were diploid.