menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 5 of 5
  • Expressed sequence tags (ESTs) from the marine red alga Gracilaria gracilis
    Lluisma, Arturo O.; Ragan, Mark A. (Springer, 1997-06)
    Expressed sequence tags (ESTs) are partial sequences of cDNAs, and can be used to characterize gene expression in organisms or tissues. We have constructed a 200-sequence EST database from vegetative thalli of Gracilaria gracilis, the first ESTs reported from any alga. This database contains recognizable ESTs corresponding to genes of carbohydrate metabolism (seven), amino acid metabolism (three), photosynthesis (five), nucleic acid synthesis, repair and processing (three), protein synthesis (14), protein degradation (six), cellular maintenance and stress response (three), other identifiable protein-coding genes (13) and 146 sequences for which significant matches were not found in existing sequence databases. We have already used this EST database to recover genes of carbohydrate biosynthesis from G. gracilis.
  • Characterization of Alexandrium tamutum (Dinophyceae) isolated from Philippine waters, with the rare detection of paralytic shellfish toxin
    Benico, Garry; Azanza, Rhodora (Association of Systematic Biologists of the Philippines, 2022-04-01)
    Alexandrium tamutum M.Montressor, A.Beran & U.John is a non-toxic, bloom-forming dinoflagellate species commonly reported in temperate waters. In this study, 8 cultures of A. tamutum established from Bolinao Channel and Manila Bay, Philippines were characterized in terms of their morphology, phylogeny and toxicity. Cells were roundish, measuring 25.5 –29.84 µm long and 26.2–28.45 µm wide. The nucleus is equatorially elongated and located at the center of the cell. The chloroplasts are numerous, golden brown in color and radially arranged. Thecal tabulation is typical of Alexandrium: APC, 4', 6'', 6c, 6s, 5''', 2''''. Shape of the taxonomically informative thecal plates such as sixth precingular plate (6'') and posterior sulcal plate (sp) was similar to A. tamutum, which confirms the species identity. However, the presence of anterior and posterior attachment pores observed in our cultured isolates is the first case in this species. Molecular phylogeny inferred from LSU rDNA and ITS supports our identification by forming a well-supported clade composed of A. tamutum strains from other geographic regions. HPLC analysis showed that A. tamutum is generally non-toxic except for strain ATC9 which has low amount of decarbamoylsaxitoxin (dcSTX), resulting to a toxicity of 0.07 fmole STX eq per cell. The present study reports the first verified occurrence of Philippine A. tamutum with reliable morphological and molecular information, including the first record in Manila Bay and first detection of PST in one strain at a certain culture period.
    We acknowledge the Department of Science and Technology Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST PCAARRD) and the University of the Philippines-The Marine Science Institute (UP-MSI) for the funding support. We are grateful for the assistance of Joshua Vacarizas, Keith Pinto and Jenelyn Mendoza for the molecular and toxicity analyses of the cultures. We also acknowledge Estrelita Flores, Emelita Eugenio and Jayson Orpeza for their assistance during the fieldwork and other logistical support.
  • Thumbnail Image
    Restriction site-associated DNA sequencing reveals local adaptation despite high levels of gene flow in Sardinella lemuru (Bleeker, 1853) along the northern coast of Mindanao, Philippines
    Labrador, Kevin; Palermo, Joseph Dominic; Agmata, Altair; Ravago-Gotanco, Rachel; Pante, Ma. Josefa (Frontiers Media SA, 2022-02-24)
    Stock identification and delineation are important in the management and conservation of marine resources. These were highlighted as priority research areas for Bali sardinella (Sardinella lemuru) which is among the most commercially important fishery resources in the Philippines. Previous studies have already assessed the stocks of S. lemuru between Northern Mindanao Region (NMR) and Northern Zamboanga Peninsula (NZP), yielding conflicting results. Phenotypic variation suggests distinct stocks between the two regions, while mitochondrial DNA did not detect evidence of genetic differentiation for this high gene flow species. This paper tested the hypothesis of regional structuring using genome-wide single nucleotide polymorphisms (SNPs) acquired through restriction site-associated DNA sequencing (RADseq). We examined patterns of population genomic structure using a full panel of 3,573 loci, which was then partitioned into a neutral panel of 3,348 loci and an outlier panel of 31 loci. Similar inferences were obtained from the full and neutral panels, which were contrary to the inferences from the outlier panel. While the full and neutral panels suggested a panmictic population (global FST ∼ 0, p > 0.05), the outlier panel revealed genetic differentiation between the two regions (global FST = 0.161, p = 0.001; FCT = 0.263, p < 0.05). This indicated that while gene flow is apparent, selective forces due to environmental heterogeneity between the two regions play a role in maintaining adaptive variation. Annotation of the outlier loci returned five genes that were mostly involved in organismal development. Meanwhile, three unannotated loci had allele frequencies that correlated with sea surface temperature. Overall, our results provided support for local adaptation despite high levels of gene flow in S. lemuru. Management therefore should not only focus on demographic parameters (e.g., stock size and catch volume), but also consider the preservation of adaptive variation.
    We would like to acknowledge the assistance provided by Ma. Rio Naguit, Asuncion De Guzman, Jerry Garcia, Jhunrey Follante, Joshep Mercene, and John Christopher Azcarraga in sample collection and initial processing. We also acknowledge the research staff of the Marine Molecular Ecology and Evolution Laboratory (MMEEL), as well as the Marine Genomics and Molecular Genetics Laboratory (MGMGL) and its head, Arturo Lluisma, for providing valuable input in the conduct of the experiment and analysis of the data. Finally, we extend our gratitude to Demian Willette, Laura David, and Jonas Quilang for their valuable feedback on the manuscript.
  • Thumbnail Image
    Global mass spectrometric analysis reveals chemical diversity of secondary metabolites and 44-Methylgambierone production in Philippine Gambierdiscus strains
    Malto, Zabrina Bernice L.; Benico, Garry A.; Batucan, Jeremiah D.; Dela Cruz, James; Romero, Marc Lawrence J.; Azanza, Rhodora V.; Salvador-Reyes, Lilibeth A. (Frontiers Media SA, 2022-02-04)
    Surveillance and characterization of emerging marine toxins and toxigenic dinoflagellates are warranted to evaluate their associated health risks. Here, we report the occurrence of the ciguatera poisoning-causative dinoflagellate Gambierdiscus balechii in the Philippines. Toxin production and chemical diversity of secondary metabolites in G. balechii GtoxSAM092414, G. balechii Gtox112513, and the recently reported Gambierdiscus carpenteri Gam1BOL080513 were assessed using targeted and untargeted UPLC-MS/MS analysis and radioligand receptor-binding assay (RBA). 44-methylgambierone was produced by all three strains, albeitwith different levels based on RBA and UPLC-HRMS/MS analysis. The fatty acid composition was similar in all strains, while subtle differences in monosaccharide content were observed, related to the collection site rather than the species. Molecular networking using the GNPS database identified 45 clusters belonging to at least ten compound classes, with terpene glycosides, carbohydrate conjugates, polyketides, and macrolides as major convergence points. Species-specific peptides and polyhydroxylated compounds were identified in G. balechii GtoxSAM092414 and G. carpenteri Gam1BOL080513, respectively. These provide a glimpse of the uncharacterized biosynthetic potential of benthic dinoflagellates and highlight the intricate and prolific machinery for secondary metabolites production in these organisms.
    We would like to thank H. Junio and the Secondary Metabolites Profiling Laboratory of the Institute of Chemistry, University of the Philippines Diliman and K. B. Davis for assistance in the conduct of this study.
  • Thumbnail Image
    Pseudocryptic diversity and species boundaries in the sea cucumber Stichopus cf. horrens (Echinodermata: Stichopodidae) revealed by mitochondrial and microsatellite markers
    Lizano, Apollo Marco D.; Kim, Kenneth M.; Juinio-Meñez, Marie Antonette; Ravago-Gotanco, Rachel (Nature Research, 2024)
    Morphologically cryptic and pseudo-cryptic species pose a challenge to taxonomic identification and assessments of species diversity and distributions. Such is the case for the sea cucumber Stichopus horrens, commonly confused with Stichopus monotuberculatus. Here, we used mitochondrial cytochrome oxidase subunit I (COI) and microsatellite markers to examine genetic diversity in Stichopus cf. horrens throughout the Philippine archipelago, to aid species identification and clarify species boundaries. Phylogenetic analysis reveals two recently diverged COI lineages (Clade A and Clade B; c. 1.35–2.54 Mya) corresponding to sequence records for specimens identified as S. monotuberculatus and S. horrens, respectively. Microsatellite markers reveal two significantly differentiated genotype clusters broadly concordant with COI lineages (Cluster 1, Cluster 2). A small proportion of individuals were identified as later-generation hybrids indicating limited contemporary gene flow between genotype clusters, thus confirming species boundaries. Morphological differences in papillae distribution and form are observed for the two species, however tack-like spicules from the dorsal papillae are not a reliable diagnostic character. An additional putative cryptic species was detected within Clade B-Cluster 2 specimens warranting further examination. We propose that these lineages revealed by COI and genotype data be referred to as Stichopus cf. horrens species complex. © The Author(s) 2024.