menu.header.image.unacom.logo
 

03. Science and Technology (Natural Sciences) Committee

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/3

In creating a culture of peace and addressing sustainable development challenges, UNESCO aims to cultivate the generation and application of scientific knowledge among its Member States. At UNACOM, we facilitate access to UNESCO’s international programmes in the sciences, such as the Intergovernmental Oceanographic Commission (IOC), Man and the Biosphere (MAB) Programme, and International Geoscience and Geoparks Programme (IGGP), among others.

Through this sector, the Commission aims to contribute to the following SDGs: 11 - Sustainable Cities and Communities, 13 - Climate Action, 14 - Life Below Water, and 15 - Life On Land. With the overarching vision of the 2023-2028 Philippine Development Plan (PDP), UNACOM targets grassroots-inspired cultural heritage and biodiversity protection and conservation, as well as multi-stakeholder partnerships for SDGs promotion.

Browse

Search Results

Now showing 1 - 2 of 2
  • Asterocladon ednae sp. nov. (Asterocladales, Phaeophyceae) from the Philippines
    Sasagawa, Eriko; Santiañez, Wilfred John E.; Kogame, Kazuhiro (Wiley, 2022-06-21)
    Members of the brown algal order Asterocladales are characterized by stellate arrangement of its chloroplasts, in which a stellate configuration has a protruding central pyrenoid complex. The order is represented by the genus Asterocladon, which consists of only three species so far. Similar to other small and filamentous seaweeds, studies on Asterocladon remain scant and their diversity poorly understood. To fill this gap, we conducted molecular-assisted taxonomic studies on Asterocladon based on seven culture isolates collected from Okinawa Prefecture, Japan and Cebu, the Philippines. One culture isolate from the Philippines was revealed to be a new species of Asterocladon based on morpho-anatomical and molecular analyses using rbcL and psaA genes and is described here as Asterocladon ednae. The other isolates were attributed to A. rhodochortonoides. A. ednae was most closely related to A. rhodochortonoides in morphology and molecular phylogeny but was distinguished from the latter by its elongately ellipsoid plurilocular sporangia. This is the first report of the genus and species A. ednae in the Philippines, further increasing the diversity of seaweeds in the country.
  • Diversity and novelty of venom peptides from Conus (Asprella) rolani revealed by analysis of its venom duct transcriptome
    Taguchi, Ryoichi; Masacupan, Dan Jethro; Lluisma, Arturo (Philippine-American Academy of Science and Engineering, 2024-04-22)
    Conus species in the sub-genus Asprella are poorly studied because they inhabit deep-water habitats. To date, only a few peptides have been characterized from this clade. In this study, the venom duct transcriptome of a member of this clade, Conus rolani, was mined for potential conopeptides. Using a highthroughput RNA sequencing platform (Illumina) and a multiple k-mer de novo assembly, we found 103 putative conopeptide precursor amino acid sequences, including the few peptides previously reported for this species. The sequences, predominantly novel based on amino acid sequence, were diverse, comprising 36 gene superfamilies (including the “unassigned” superfamilies). As observed in other Conus species, the O1 gene superfamily was the most diverse (12 distinct sequences) but interestingly none of the sequences were found to contain the conserved amino acids associated with certain bioactivities in peptides found in piscivorous Conus species. The O2 superfamily was also highly diverse but conikot-ikot and an unassigned superfamily (MMSRMG) were more diverse than the rest of the superfamilies. In terms of gene expression levels, the understudied MEFRR paralog of the ancestral divergent M---L-LTVA superfamily was found to be the most highly expressed in the transcriptome, suggesting a novel role. Additionally, a conopeptide with high sequence similarity to A2 secretory group XII phospholipases is the first reported member of this phospholipase group in Conus and potentially represents a novel superfamily, expanding the catalog of known phospholipases present in cone snail venoms. The discovery of these putative conopeptides provides the first but early glimpse of the diversity and novelty of the peptides in the Asprella group and sets the stage for their functional characterization.