menu.header.image.unacom.logo
 

03. Science and Technology (Natural Sciences) Committee

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/3

In creating a culture of peace and addressing sustainable development challenges, UNESCO aims to cultivate the generation and application of scientific knowledge among its Member States. At UNACOM, we facilitate access to UNESCO’s international programmes in the sciences, such as the Intergovernmental Oceanographic Commission (IOC), Man and the Biosphere (MAB) Programme, and International Geoscience and Geoparks Programme (IGGP), among others.

Through this sector, the Commission aims to contribute to the following SDGs: 11 - Sustainable Cities and Communities, 13 - Climate Action, 14 - Life Below Water, and 15 - Life On Land. With the overarching vision of the 2023-2028 Philippine Development Plan (PDP), UNACOM targets grassroots-inspired cultural heritage and biodiversity protection and conservation, as well as multi-stakeholder partnerships for SDGs promotion.

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    Spatial variation in the benthic community structure of a coral reef system in the central Philippines: Highlighting hard coral, octocoral, and sponge assemblages
    Lalas, Jue Alef A.; Manzano, Geminne G.; Desabelle, Lee Arraby B.; Baria-Rodriguez, Maria Vanessa (Elsevier, 2023-07)
    Coral reefs are complex habitats that contain very high biodiversity and provide different ecosystem services. In the Coral Triangle, however, various major benthic components are still understudied. This can limit our understanding of coral reef community dynamics, especially in the presence of a changing climate coupled with local disturbances (e.g., decreased water quality). This study describes the benthic community structure of an ecologically and economically important coral reef system in the central Philippines through characterizing the assemblages of three major components (hard corals, octocorals, and sponges) among sites and stations with varying environmental conditions (i.e., exposure to monsoons, water quality levels). Results reveal significant variations in the mean percentage covers of hard corals, octocorals, and sponges at the site and station levels (ANOVA, p < 0.05), with hard corals dominating in Site 1, which is more exposed to the southwest monsoon, and Site 3, which is an embayed and unexposed site with low water quality, while soft corals dominated in Site 2, which is more exposed to the northeast monsoon. Multivariate analyses also revealed significant variations in the benthic community structure at different spatial scales (ANOSIM, p < 0.05). Interestingly, even stations within a site had significant variations in community structure, with different taxa being dominant. This study highlights the importance of conducting more detailed analyses of understudied taxa (i.e., octocorals and sponges) during coral reef surveys to improve our understanding of coral reef community dynamics that is very important for management.
  • Thumbnail Image
    Fish and benthic communities in an offshore and well-managed coral reef after bleaching disturbance in the Philippines
    Quimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle; Gomez, Elizabeth; Sayco, Sherry Lyn; Dumalagan, Edwin E.; Siringan, Fernando P.; Conaco, Cecilia; Cabaitan, Patrick C. (Springer, 2023-08-29)
    Climate change is perhaps the greatest threat to coral reefs worldwide. However, there is spatial variation in the extent and severity of this disturbance, with offshore and well-managed reefs presumed to be less vulnerable to anthropogenic disturbance. Here, fish and benthic communities at the offshore and well-managed reefs of Apo Reef Natural Park, Philippines, were examined during a bleaching disturbance in 2016 and reassessed 2 (2018) and 3 years (2019) after using scuba surveys. Results showed that benthic communities varied more strongly with year attributed to changes in the benthic cover of coral. These changes were influenced by site, with some sites experiencing coral loss of 41–48%, while other sites exhibited minimal changes. Site differences in coral loss may be associated with coral cover, with sites that had high coral cover prior to bleaching incurring larger loss of coral cover. Fish communities varied more with sites and was associated with differences in the predominant benthos. The stability of fish communities with year despite coral loss may be attributed to the minimal loss of coral cover at some sites. For sites that experienced high losses of coral cover, the presence of alternative and deeper habitats may have provided shelter and food for more mobile fishes maintaining taxonomic composition within sites. This study shows that bleaching disturbance circumvents effective management, but impacts are variable even at small (≤ 3 km) spatial scales. Benthic community composition and presence of alternative habitats potentially alleviate the negative impacts of bleaching on reef fish diversity and abundance.
  • Thumbnail Image
    Decadal stability in coral cover could mask hidden changes on reefs in the East Asian Seas
    Chan, Y. K. S.; Affendi, Y. A.; Ang, P. O.; Baria-Rodriguez, M. V.; Chen, C. A.; Chui, A. P. Y.; Glue, M.; Huang, H.; Kuo, C-Y.; Kim, S. W.; Lam, V. Y. Y.; Lane, D. J. W.; Lian, J. S.; Lin, S. M. N. N.; Lunn, Z.; Nañola, C. L.; Nguyen, V. L.; Park, H. S.; Sutthacheep, M.; Vo, S. T.; Vibol, O.; Waheed, Z.; Yamano, H.; Yeemin, T.; Yong, E.; Kimura, T.; Tun, K.; Chou, L. M.; Huang, D. (Springer, 2023-06-10)
    Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
  • Multiple severe storms revealed by coral boulders at Pasuquin, northwestern Luzon, Philippines
    Gong, Shou-Yeh; Liu, Sze-Chieh; Siringan, Fernando P.; Gallentes, Adonis; Lin, Han-Wei; Shen, Chuan-Chou (Elsevier, 2022-11-15)
    Over 30 meter-sized coral boulders are scattered 45–140 m away from the edge and above high tide on a Holocene reef flat at Pasuquin, northwestern Luzon, Philippines. The boulders are overturned or tilted as indicated by the framework fossil corals in them, but have the same lithology as those along the reef edge and thus were likely broken off from there. The dimensions of boulders larger than 3 m were calculated from 3D models constructed by photogrammetry. Their volumes range from 10 to 53 m3. Assuming 2.1 g/cm3 for wet density, weights of boulders would range from 21 to 110 metric tons. Boulders of such size and weight can't be moved by normal waves, and thus must have been dislodged by extreme wave events (EWEs). Small and well-preserved corals found on the surface of seven boulders were collected for 230Th dating to reconstruct the timing of displacement. The ages of corals are 1781.6 ± 1.9, 1903.4 ± 2.7, 1945.8 ± 1.2, 1956.9 ± 1.2, 1956.75 ± 0.99, 1978.1 ± 1.5 and 2002.78 ± 0.88 CE, respectively. These ages are considered to constrain the timing of boulder displacement from the reef edge. We propose that typhoon-induced EWEs were responsible for the displacement of these boulders at Pasuquin.
  • Thumbnail Image
    Sea surface carbonate dynamics at reefs of Bolinao, Philippines: Seasonal variation and fish mariculture-induced forcing
    Isah, Raffi R.; Enochs, Ian C.; San Diego-McGlone, Maria Lourdes (Frontiers, 2022-11-11)
    Coral reefs are vulnerable to global ocean acidification (OA) and local human activities will continue to exacerbate coastal OA. In Bolinao, Philippines, intense unregulated fish mariculture has resulted in regional eutrophication. In order to examine the coastal acidification associated with this activity and the impact on nearby coral reefs, water quality and carbonate chemistry parameters were measured at three reef sites, a mariculture site and an offshore, minimally impacted control site during both the wet and dry season. Additionally, benthic community composition was characterized at reef sites, and both autonomous carbonate chemistry sampling and high-frequency pH measurements were used to characterize fine-scale (diel) temporal variability. Water quality was found to be poorer at all reefs during the wet season, when there was stronger outflow of waters from the mariculture area. Carbonate chemistry parameters differed significantly across the reef flat and between seasons, with more acidic conditions occurring during the dry season and increased primary production suppressing further acidification during the wet season. Significant relationships of both total alkalinity (TA) and dissolved inorganic carbon (DIC) with salinity across all stations may imply outflow of acidified water originating from the mariculture area where pH values as low as 7.78 were measured. This apparent mariculture-induced coastal acidification was likely due to organic matter respiration as sustained mariculture will continue to deliver organic matter. While TA-DIC vector diagrams indicate greater contribution of net primary production, net calcification potential in the nearest reef to mariculture area may already be diminished. The two farther reefs, characterized by higher coral cover, indicates healthier ecosystem functioning. Here we show that unregulated fish mariculture activities can lead to localized acidification and impact reef health. As these conditions at times approximate those projected to occur globally due to OA, our results may provide insight into reef persistence potential worldwide. These results also underscore the importance of coastal acidification and indicate that actions taken to mitigate OA on coral reefs should address not only global CO2 emissions but also local perturbations, in this case fish mariculture-induced eutrophication.
  • Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions
    Padayhag, Blaire M.; Nada, Michael Angelou L.; Baquiran, Jake Ivan P.; Sison-Mangus, Marilou P.; San Diego-McGlone, Maria Lourdes; Cabaitan, Patrick C.; Conaco, Cecilia (Elsevier, 2023-08)
    Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
  • Thumbnail Image
    Live slow, die old: larval propagation of slow-growing, stress-tolerant corals for reef restoration
    Guest, James; Baria-Rodriguez, Maria Vanessa; Toh, Tai Chong; dela Cruz, Dexter; Vicentuan, Kareen; Gomez, Edgardo; Villanueva, Ronald; Steinberg, Peter; Edwards, Alasdair (Springer, 2023-11-06)
    Efforts to restore coral reefs usually involve transplanting asexually propagated fast-growing corals. However, this approach can lead to outplanted populations with low genotypic diversity, composed of taxa susceptible to stressors such as marine heatwaves. Sexual coral propagation leads to greater genotypic diversity, and using slow-growing, stress-tolerant taxa may provide a longer-term return on restoration efforts due to higher outplant survival. However, there have been no reports to date detailing the full cycle of rearing stress-tolerant, slow-growing corals from eggs until sexual maturity. Here, we sexually propagated and transplanted two massive slow-growing coral species to examine long-term success as part of reef restoration efforts. Coral spat were settled on artificial substrates and reared in nurseries for approximately two years, before being outplanted and monitored for survivorship and growth for a further four years. More than half of initially settled substrates supported a living coral following nursery rearing, and survivorship was also high following outplantation with yields declining by just 10 to 14% over four years. At 6-years post-fertilisation over 90% of outplanted corals were reproductively mature, demonstrating the feasibility of restoring populations of sexually mature massive corals in under a decade. Although use of slower growing, stress tolerant corals for reef restoration may provide a longer-term return on investment due to high post-transplantation survival rates, considerable time is required to achieve even modest gains in coral cover due to their relatively slow rates of growth. This highlights the need to use a mix of species with a range of life-history traits in reef restoration and to improve survivorship of susceptible fast-growing taxa that can generate rapid increases in coral cover.
  • Thumbnail Image
    Survival and growth of coral recruits in varying group sizes
    Ligson, Charlon A.; Cabaitan, Patrick C.; Harrison, Peter L. (Elsevier, 2022-11)
    Coral larvae usually settle as solitary individuals but sometimes also in aggregations, especially when settlement sites are limited. Fusion of coral individuals can consist of different group sizes with varying numbers of adjacent coral spat. However, little is known about the performance of coral individuals in different group sizes, especially during the early post-settlement phase, where high mortality usually occurs. Here, we investigated the performance of Acropora verweyi juveniles in varying group sizes of fused coral spat. Specifically, we examined the survival and growth rate of coral individuals, with four group size levels: solitary spat, 2, 3–5, 6–9, and 10–28-spat group size, over 21 weeks post-settlement. The highest survival was detected in the 6–9 spat group size followed by the 3–5 and 10–28 group sizes, with lower survival in the 2-spat group size and solitary spat. Overall, 7.4% of the 338 coral individuals reared in ex-situ hatchery conditions survived up to the last monitoring at 21 weeks. At 15 weeks post-settlement, the mean surface areas of solitary and 2-spat group sizes were five- to eight-fold smaller than in larger fused coral individuals. However, there were no significant differences between the percent growth changes among the coral group sizes. The present study suggests that fused coral spat of larger group sizes can immediately gain size, but not necessarily have higher growth rates within the first 15 weeks post-settlement. Results also revealed that fusions of at least six A. verweyi spat had higher survival than small fused individuals and solitary spat, at least in the first few months after settlement. The advantage of such fusions, especially in larger group sizes, may offer an enhanced survival for coral spat during the critical period of early post-settlement. This outcome provides potential advantages for coral restoration using sexual production of larvae.
  • Genus and size-specific susceptibility of soft corals to 2020 bleaching event in the Philippines
    Baran, Christine; Luciano, Rhea Mae A.; Segumalian, Christine; Valino, Darryl Anthony; Baria-Rodriguez, Maria Vanessa (Taylor & Francis, 2023-05-08)
    Soft corals are zooxanthellate sessile animals supporting various organisms in coral reefs. However, their populations are threatened by the impacts of ocean warming. Under thermal stress conditions, soft corals may experience mild to severe bleaching which may lead to death. Understanding soft coral bleaching responses highlights the importance in predicting how populations and diversity may be affected by changing climate scenarios. In this study, we examined the bleaching responses of the three dominant soft coral genera (Lobophytum, n = 1318; Sarcophyton, n = 116; Sinularia, n = 639 colonies) in the Bolinao-Anda Reef Complex (BARC), Pangasinan, north-western Philippines during the 2020 thermal stress event in terms of genus and colony size susceptibility, and zooxanthellae density. Degree heating week (DHW) data from 1986–2020 were obtained using remotely sensed data to determine thermal anomalies in the study sites. The maximum DHW (6.3) in 2020 occurred between July–August while bleaching surveys were done during October of the same year. The percentage of bleached portions in each colony was used to determine bleaching category: no bleaching (0%), moderately bleached (1–50%) and heavily bleached (>50%). Quantification of bleaching prevalence and susceptibility of colony sizes were determined by colony count and mean diameter measurements taken from quadrat photographs in October 2020. Haphazard tissue collection (∼3 cm) in each colony of three soft coral genera per bleaching category was done to quantify zooxanthellae density. Results showed that Lobophytum colonies had the lowest bleaching prevalence (41%), followed by Sinularia (66%) and Sarcophyton (78%). All colony size classes of the three genera were susceptible to bleaching. However, smaller colonies of Lobophytum (<15 cm), Sarcophyton (<5 cm) and Sinularia (<5 cm) showed less susceptibility than large colonies. Zooxanthellae density was significantly reduced in moderately and heavily bleached colonies. The results of this study highlight that bleaching susceptibility is genus specific, with Sarcophyton and Sinularia being more susceptible to bleaching than Lobophytum. Smaller colonies seemed to be less susceptible to bleaching than large-sized soft corals suggesting a differential thermal stress response. Spatial variations in bleaching prevalence were also found among reef sites with varying environmental conditions and thermal stress histories. This work provided initial observations on how bleaching affects soft corals. Further studies on soft coral community recovery are recommended to fully understand how these organisms perform after thermal stress events.
  • Thumbnail Image
    Implications of fisher perceptions on coral restoration in Tondol, northwestern Philippines
    Gomez, Rickdane; Mamauag, Samuel; Fabinyi, Michael; dela Cruz, Dexter; McLeod, Ian M.; Cabaitan, Patrick; Harrison, Peter L. (Elsevier, 2024)
    Increasing coral restoration efforts globally have been aimed at improving reef status and the ecosystem functions and services they provide, including enhancing reef fish communities and fisheries production on nearby reefs. However, empirical evidence showing the influence of coral restoration on fish stocks is limited. In Barangay Tondol, a small-scale fishing village in the northwestern Philippines, fisher knowledge and perception studies were completed through individual interviews to provide insights into the perceived impacts of local restoration efforts on coral reef conditions and fishery outputs. The influence of fishers' social demographics and fishery information to their held perceptions were also explored. Fishers’ responses showed a perceived decline in fish stocks over the last 5–10 years mainly attributed to overharvesting, and a slight improvement in coral reef condition due to a reduction in destructive fishing. Out of 53 fisher respondents, 72% were aware of coral restoration efforts in their area and held positive perceptions that theoretically, conducting coral restoration can improve their fish stocks and local reef conditions through the provision of habitat functions. Perceived actual effectiveness of the local efforts was also positive, but with a lower number of responses. Multiple hierarchical regression tests showed that, among social demographics, fishery information, and perceptions on fish stocks, perceived improvement in coral condition was associated with stronger support for coral restoration activities. These findings indicate that fishers perceive positive effects of coral restoration to local coral status and fisheries, and highlight the need for restoration practitioners to engage early on with key stakeholders to assess local fisheries status and local priorities to inform restoration strategies. © 2024 Elsevier Ltd