menu.header.image.unacom.logo
 

03. Science and Technology (Natural Sciences) Committee

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/3

In creating a culture of peace and addressing sustainable development challenges, UNESCO aims to cultivate the generation and application of scientific knowledge among its Member States. At UNACOM, we facilitate access to UNESCO’s international programmes in the sciences, such as the Intergovernmental Oceanographic Commission (IOC), Man and the Biosphere (MAB) Programme, and International Geoscience and Geoparks Programme (IGGP), among others.

Through this sector, the Commission aims to contribute to the following SDGs: 11 - Sustainable Cities and Communities, 13 - Climate Action, 14 - Life Below Water, and 15 - Life On Land. With the overarching vision of the 2023-2028 Philippine Development Plan (PDP), UNACOM targets grassroots-inspired cultural heritage and biodiversity protection and conservation, as well as multi-stakeholder partnerships for SDGs promotion.

Browse

Search Results

Now showing 1 - 2 of 2
  • Diversity and novelty of venom peptides from Conus (Asprella) rolani revealed by analysis of its venom duct transcriptome
    Taguchi, Ryoichi; Masacupan, Dan Jethro; Lluisma, Arturo (Philippine-American Academy of Science and Engineering, 2024-04-22)
    Conus species in the sub-genus Asprella are poorly studied because they inhabit deep-water habitats. To date, only a few peptides have been characterized from this clade. In this study, the venom duct transcriptome of a member of this clade, Conus rolani, was mined for potential conopeptides. Using a highthroughput RNA sequencing platform (Illumina) and a multiple k-mer de novo assembly, we found 103 putative conopeptide precursor amino acid sequences, including the few peptides previously reported for this species. The sequences, predominantly novel based on amino acid sequence, were diverse, comprising 36 gene superfamilies (including the “unassigned” superfamilies). As observed in other Conus species, the O1 gene superfamily was the most diverse (12 distinct sequences) but interestingly none of the sequences were found to contain the conserved amino acids associated with certain bioactivities in peptides found in piscivorous Conus species. The O2 superfamily was also highly diverse but conikot-ikot and an unassigned superfamily (MMSRMG) were more diverse than the rest of the superfamilies. In terms of gene expression levels, the understudied MEFRR paralog of the ancestral divergent M---L-LTVA superfamily was found to be the most highly expressed in the transcriptome, suggesting a novel role. Additionally, a conopeptide with high sequence similarity to A2 secretory group XII phospholipases is the first reported member of this phospholipase group in Conus and potentially represents a novel superfamily, expanding the catalog of known phospholipases present in cone snail venoms. The discovery of these putative conopeptides provides the first but early glimpse of the diversity and novelty of the peptides in the Asprella group and sets the stage for their functional characterization.
  • Thumbnail Image
    Physicochemical and biochemical characterization of collagen from Stichopus cf. horrens tissues for use as stimuli-responsive thin films
    Sisican, Kim Marie D.; Torreno, Vicenzo Paolo M.; Yu, Eizadora T.; Conato, Marlon T. (American Chemical Society, 2023-09-20)
    The mutable collagenous tissue (MCT) of sea cucumber, with its ability to rapidly change its stiffness and extensibility in response to different environmental stress conditions, serves as inspiration for the design of new smart functional biomaterials. Collagen, extracted from the body wall of Stichopus cf. horrens, a species commonly found in the Philippines, was characterized for its suitability as stimuli-responsive films. Protein BLAST search showed the presence of sequences commonly found in type VII and IX collagen, suggesting that Stichopus horrens collagen is heterotypic. The maximum transition temperature recorded was 56.0 ± 2 °C, which is higher than those of other known sources of marine collagen. This suggests that S. horrens collagen has better thermal stability and durability. Collagen-based thin films were then prepared, and atomic force microscopy (AFM) imaging showed the visible collagen network comprising the films. The thin films were subjected to thermomechanical analysis with degradation starting at >175 °C. At 100–150 °C, the collagen-based films apparently lose their translucency due to the removal of moisture. Upon exposure to ambient temperature, instead of degrading, the films were able to revert to the original state due to the readsorption of moisture. This study is a demonstration of a smart biomaterial developed from S. cf. horrens collagen with potential applications in food, pharmaceutical, biomedical, and other collagen-based research.