menu.header.image.unacom.logo
 

03. Science and Technology (Natural Sciences) Committee

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/3

In creating a culture of peace and addressing sustainable development challenges, UNESCO aims to cultivate the generation and application of scientific knowledge among its Member States. At UNACOM, we facilitate access to UNESCO’s international programmes in the sciences, such as the Intergovernmental Oceanographic Commission (IOC), Man and the Biosphere (MAB) Programme, and International Geoscience and Geoparks Programme (IGGP), among others.

Through this sector, the Commission aims to contribute to the following SDGs: 11 - Sustainable Cities and Communities, 13 - Climate Action, 14 - Life Below Water, and 15 - Life On Land. With the overarching vision of the 2023-2028 Philippine Development Plan (PDP), UNACOM targets grassroots-inspired cultural heritage and biodiversity protection and conservation, as well as multi-stakeholder partnerships for SDGs promotion.

Browse

Search Results

Now showing 1 - 1 of 1
  • Quantifying vertical land motion at tide gauge sites using permanent scatterer interferometric synthetic aperture radar and global navigation satellite system solutions
    Reyes, Rosalie; Bauzon, Ma. Divina Angela; Pasaje, Nikki Alen; Alfante, Rey Mark; De Lara, Pocholo Miguel; Ordillano, Marion; Flores, Paul Caesar; Rediang, Abegail; Nota, Patrick Anthony; Siringan, Fernando; Blanco, Ariel; Bringas, Dennis (Springer, 2022-01-29)
    One of the consequences of climate change is sea level rise (SLR). Near the coast SLR varies at different locations due to the contributions from regional/local climatic and non-climatic factors. Vertical land motion (VLM) can affect the accuracy of sea level observations from tide gauges (TG) that may exacerbate coastal area inundation/flooding. This study investigated the viability of Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to quantify the rate of VLM at the TG sites. Measurements from TG co-located GNSS receivers provide the actual VLM rates and ground truth for PSInSAR-derived rates. Based on the results from the 9 study sites, almost all except one are subsiding. Both PSInSAR and GNSS solutions showed the same trend with rates that correlate at 0.89. Analysis from 20 Active GNSS stations showed 95% of the sites are undergoing land subsidence. This should be a cause of concern for communities near the coastal areas.