03. Science and Technology (Natural Sciences) Committee
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/3
In creating a culture of peace and addressing sustainable development challenges, UNESCO aims to cultivate the generation and application of scientific knowledge among its Member States. At UNACOM, we facilitate access to UNESCO’s international programmes in the sciences, such as the Intergovernmental Oceanographic Commission (IOC), Man and the Biosphere (MAB) Programme, and International Geoscience and Geoparks Programme (IGGP), among others.
Through this sector, the Commission aims to contribute to the following SDGs: 11 - Sustainable Cities and Communities, 13 - Climate Action, 14 - Life Below Water, and 15 - Life On Land. With the overarching vision of the 2023-2028 Philippine Development Plan (PDP), UNACOM targets grassroots-inspired cultural heritage and biodiversity protection and conservation, as well as multi-stakeholder partnerships for SDGs promotion.
Through this sector, the Commission aims to contribute to the following SDGs: 11 - Sustainable Cities and Communities, 13 - Climate Action, 14 - Life Below Water, and 15 - Life On Land. With the overarching vision of the 2023-2028 Philippine Development Plan (PDP), UNACOM targets grassroots-inspired cultural heritage and biodiversity protection and conservation, as well as multi-stakeholder partnerships for SDGs promotion.
Browse
2 results
Search Results
- Summer heatwave impacts on the European kelp Saccharina latissima across its latitudinal distribution gradientDiehl, Nora; Roleda, Michael Y.; Bartsch, Inka; Karsten, Ulf; Bischof, Kai (Frontiers Media SA, 2021-10-11)Kelps are important foundation species in coastal ecosystems currently experiencing pronounced shifts in their distribution patterns caused by ocean warming. While some populations found at species’ warm distribution edges have been recently observed to decline, expansions of some species have been recorded at their cold distribution edges. Reduced population resilience can contribute to kelp habitat loss, hence, understanding intraspecific variations in physiological responses across a species’ latitudinal distribution is crucial for its conservation. To investigate potential local responses of the broadly distributed kelp Saccharina latissima to marine heatwaves in summer, we collected sporophytes from five locations in Europe (Spitsbergen, Bodø, Bergen, Helgoland, Locmariaquer), including populations exposed to the coldest and warmest local temperature regimes. Meristematic tissue from sporophytes was subjected to increasing temperatures of Δ+2, Δ+4 and Δ+6°C above the respective mean summer temperatures (control, Δ±0°C) characteristic for each site. Survival and corresponding physiological and biochemical traits were analyzed. Vitality (optimum quantum yield, Fv/Fm) and growth were monitored over time and biochemical responses were measured at the end of the experiment. Growth was highest in northern and lowest in southern populations. Overall, northern populations from Spitsbergen, Bodø and Bergen were largely unaffected by increasing summer temperatures up to Δ+6°C. Conversely, sporophytes from Helgoland and Locmariaquer were markedly stressed at Δ+6°C: occurrence of tissue necrosis, reduced Fv/Fm, and a significantly elevated de-epoxidation state of the xanthophyll cycle (DPS). The variations in phlorotannins, mannitol and tissue C and N contents were independent of temperature treatments and latitudinal distribution pattern. Pronounced site-specific variability in response to increasing temperatures implies that exceeding a threshold above the mean summer temperature exclusively affect rear-edge (southernmost) populations.Abiotic temperature data used in this manuscript were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. Sampling in France was conducted in accordance with the French legislation on the Access to Genetic Resources and Benefit-Sharing. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. This study has been conducted at the Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven and at the AWIPEV Research Station in Ny-Ålesund, Svalbard. We are grateful to the station staff of AWIPEV for support and logistics and to the scientific diving teams on Spitsbergen and Helgoland for sampling. We thank A. Wagner (AWI) for sampling support on Helgoland and his support in the setting up of the experiments, and also J. Müller (University of Rostock) for running the C:N analyzer. B. Meyer-Schlosser (University of Bremen) supported sampling and pigment analyses.
- Microscopic stages of North Atlantic Laminaria digitata (Phaeophyceae) exhibit trait-dependent thermal adaptation along latitudesSchimpf, Nele M.; Liesner, Daniel; Franke, Kiara; Roleda, Michael Y.; Bartsch, Inka (Frontiers Media SA, 2022-06-17)Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southern-most population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata.We would like to thank A. Wagner for the sampling and clonal isolation of kelp material and technical assistance in the laboratory, C. Daniel for support with the image analysis, L. Foqueau for the SST data, C. Gauci for statistical advice and S. DeAmicis for supervision in this BSc Thesis.