Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
Search Results
- Low coral bleaching prevalence at the Bolinao-Anda Reef Complex, northwestern Philippines during the 2016 thermal stress eventQuimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle C.; Gomez, Elizabeth J.; Sayco, Sherry Lyn G.; Tolentino, Mark Paulo S.; Cabaitan, Patrick C. (Elsevier BV, 2020-11)Here, we examined the coral bleaching responses during the 2016 thermal stress event and post-bleaching changes in coral communities in the heavily disturbed reefs of the Bolinao-Anda Reef Complex (BARC), northwestern Philippines. Less than 25% of colonies bleached, with 77% attributed to five genera (Dipsastrea, Porites, Fungia, Seriatopora, and Montipora). Coral bleaching prevalence was associated with site location, coral composition, and coral abundance, suggesting that small-scale variation (<20 km) in coral communities (taxa and density) influences spatial variation in coral bleaching prevalence. There was no noticeable change in coral composition and cover two years after the bleaching event as exposure to chronic disturbance likely selected for the dominance of stress tolerant coral taxa and communities. Results show that the 2016 thermal stress event caused coral bleaching but with low prevalence at the BARC, which suggests that disturbed reefs may provide spatial refuge to coral communities from thermal stress.We acknowledge M Ponce, F Castrence, R de Guzman, G de Guzman, R Adolfo, and R Uriarte for the field assistance; and boatmen and administration from the Bolinao Marine Laboratory of the UPMSI (University of the Philippines Marine Science Institute) for their valuable assistance in the logistics and field works. We are grateful to R Dizon for kindly reading and providing suggestions that improved the manuscript. This study was funded by the OVCRD (Office of the Vice Chancellor for Research and Development) Outright Research Grant (Project No. 161607 PNSE) and the Marine Science Institue In-house Research Grant of the University of the Philippines; and grants from the Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development of the Department of Science and Technology (QMSR-MRRD-MEC-295-1449 and QMSR-MRRD-MEC314-1542) of PC Cabaitan.
- MPA-FishMApp – a citizen science app that simplifies monitoring of coral reef fish density and biomass in marine protected areasAbesamis, Rene; Balingit, Rodel; de Castro, Romulo; Aguila, Raphael Nelo; Cabiguin, Maryjune; Villagracia, Julius; Susmeña, Marynoll; Montemar, Mario Neil; Yocor, Antonio (National Fisheries Research and Development Institute, 2022-12)Monitoring changes in fish density and biomass inside marine protected areas (MPAs) through fish visual census (FVC) can determine if MPAs are achieving their goal of promoting fish population recovery. Simplified FVC methods have been developed for citizen scientists to enable them to monitor fish populations in MPAs. However, MPA monitoring programs led by local stakeholders remain rare and difficult to sustain due to technical barriers related to FVC data management. Here, we describe and evaluate a novel online app called MPA-FishMApp, which we developed to help stakeholders of MPAs that protect coral reefs in the Philippines efficiently store, analyze, and visualize FVC data. MPA-FishMApp is coupled to a simplified FVC method wherein the observer records only 21 reef fish species groups during surveys. The app provides a simple data entry interface, cloud storage, and algorithms to estimate fish density and biomass. Spatial and temporal trends in fish density and biomass can be instantaneously visualized in the app based on relative importance to fisheries. Field testing suggested that the MPA-FishMApp methodology (simplified FVC and app) is sensitive enough to detect qualitative patterns showing differences in density and biomass that may develop between MPAs and fished sites, especially in fishes that are highly important to fisheries. However, users must have sufficient training and experience in simplified FVC to produce reliable data. MPA-FishMApp may help reverse the lack of monitoring in MPAs across the Philippines and offers an accessible, transparent, and auditable venue for collaboration between citizen scientists and professional scientists.
- C30 — A simple, rapid, scientifically valid, and low-cost method for citizen-scientists to monitor coral reefsLicuanan, Wilfredo Y.; Mordeno, Princess Zyrlyn B.; Go, Marco V. (Elsevier, 2021-09)The extent and speed of recent changes in reef coral abundances due to ocean warming and human impacts require more widespread capability to map and measure these changes, especially in countries like the Philippines. We present “C30”, a simple, rapid, scientifically valid, and low-cost method for skin divers or freedivers to take random photo-quadrat images within predefined stations on the upper reef slope. C30 yields coral cover data similar to those collected using the more intensive C5 method and can be as powerful in detecting small differences in reef cover. Less time is also needed for training personnel and sampling. However, more photo-quadrat images, better cameras, and closer collaboration with local scientists are required if higher precision data and estimates of coral diversity are needed from C30. C30 is a valuable tool for participatory, community-based citizen science monitoring of coral reefs.We thank the Department of Science and TechnologyPhilippine Council for Agriculture, Aquatic and Natural Resources Research and Development (QMSR-MRRD-COR-0-1209 and PCAARRD-GIA 4478), and the Department of Environment and Natural Resources Coral Reef Visualization and Assessment, The Philippines Project for funding some of the fieldwork. The initial research on citizen-science monitoring was undertaken with funding from Oscar M. Lopez Center for Climate Change Adaptation and Disaster Risk Management Foundation, Inc., The Philippines (Grant number OMLC RG 2017-18). We also thank the DLSU Innovation and Technology Office for the patent application for the C30 monopod in the Intellectual Property Office of the Philippines. The comments and suggestions of the reviewers are acknowledged and are very much appreciated. WY Licuanan is the holder of the Br H Alfred Shields FSC Professorial Chair in Biology and Br Cresentius Richard Duerr FSC Professorial Chair in Biochemistry.
- Survival and sexual maturity of sexually propagated Acropora verweyi corals 4 years after outplantationLigson, Charlon A.; Cabaitan, Patrick C. (Wiley, 2021-04-19)Most coral reef restoration efforts are carried out over 1–2 years, and few have assessed long-term (over 3 years) outcomes. Although studies of outplantation of sexually propagated corals have reported promising initial results, few studies have followed outplanted corals to maturity. Here, we monitored sexually propagated Acropora verweyi corals for 4 years post-outplantation to determine their survival and sexual maturity. These corals were outplanted when 4 months old in two size classes (small = 0.3–0.5 cm; large = 1.0–1.5 cm) at two sites in the northwestern Philippines. Four years after outplantation, the 240 colonies of A. verweyi exhibited 17.9% survival, with mean diameters ranging from 7.48–26.8 cm. Most of the surviving outplants were gravid (81.4% of the 43 colonies) with mean diameters of at least 11.8 cm. Higher survivorship was detected in the initial large size class outplants than in the small ones at the natal site, but not at the other site. However, 4 years after outplantation, there was no significant difference in terms of geometric mean diameter between the initial size classes or between the sites. Results show that 4-month-old outplants of sexually propagated corals can survive until sexual maturity and are already capable of contributing gametes for the potential recovery of degraded coral communities at age 4 years.The authors are grateful to Ronald de Guzman, Francis Kenith Adolfo,and Renato Adolfo for the field and hatchery assistance.This study was supported by a grant from the Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development of the Department of Science and Technology to PCC. The authors are also grateful to Prof. Peter Harrison for providing CAL a research assistantship opportunity and for additional logistical support through an Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development.
- Latitudinal variation in growth and survival of juvenile corals in the West and South PacificNozawa, Yoko; Villanueva, Ronald D.; Munasik, Munasik; Roeroe, Kakaskasen Andreas; Mezaki, Takuma; Kawai, Takashi; Guest, James; Arakaki, Seiji; Suzuki, Go; Tanangonan, Jean J. B.; Ang, Put O.; Edmunds, Peter J. (Springer, 2021-08-18)Reef-building corals are found across > 30° of latitude from tropical to temperate regions, where they occupy habitats greatly differing in seawater temperature and light regimes. It remains largely unknown, however, how the demography of corals differs across this gradient of environmental conditions. Variation in coral growth is especially important to coral populations, because aspects of coral demography are dependent on colony size, with both fecundity and survivorship increasing with larger colonies. Here we tested for latitudinal variation in annual growth rate and survival of juvenile corals, using 11 study locations extending from 17° S to 33° N in the West and South Pacific. Regression analyses revealed a significant decline in annual growth rates with increasing latitude, whereas no significant latitudinal pattern was detected in annual survival. Seawater temperature showed a significant and positive association with annual growth rates. Growth rates varied among the four common genera, allowing them to be ranked Acropora > Pocillopora > Porites > Dipsastraea. Acropora and Pocillopora showed more variation in growth rates across latitudes than Porites and Dipsastraea. Although the present data have limitations with regard to difference in depths, survey periods, and replication among locations, they provide evidence that a higher capacity for growth of individual colonies may facilitate population growth, and hence population recovery following disturbances, at lower latitudes. These trends are likely to be best developed in Acropora and Pocillopora, which have high rates of colony growth.We appreciate volunteers, students, and assistants for data collection. Y.N. especially thank H.-S. Hsieh and C.-H. Liu for data measurement, and V. Denis for his comments on the manuscript. Comments from two anonymous reviewers improve our manuscript greatly. The study was funded by the thematic research grant of Academia Sinica (23-2g) and an internal research grant of Biodiversity Research Center, Academia Sinica to Y.N. The Okinawa survey was partly supported by the Japan Society for the Promotion of Science through NEXT Program #GR083. Temperature data for the Okinawa site were provided by the coral reef survey of Monitoring Sites 1000 Project, operated by the Ministry of the Environment, Japan. Temperature data for Moorea were provided by the Moorea Coral Reef LTER, funded by the US National Science Foundation (OCE-0417412).
- Responses of Buluan Island turbid fringing reefs, southern Philippines to the 2016 thermal anomalyValino, Darryl Anthony M.; Baria-Rodriguez, Maria Vanessa; Dizon, Romeo M.; Aliño, Porfirio M. (Elsevier B.V., 2021-03)Coral beaching due to increasing sea surface temperature causes a decline of global reef ecosystems. Turbidity and sedimentation are localized threats that may contribute to and exacerbate the impacts of coral bleaching. Some reports show coral communities thriving in turbid conditions are resilient to bleaching-related mortality events. In the Philippines, information on the effects of turbidity and elevated levels of light attenuation on bleaching in coral assemblages is generally lacking. This study describes the response to coral bleaching of a turbid reef in Buluan Island Marine Sanctuary (BIMS), southern Philippines. Coral cover and diversity showed no changes after the bleaching event. Coral community composition and abundance in some genera were affected but the majority showed either no significant change or recovery to pre-bleaching state even with high bleaching index values. The dominance and presence of bleaching-susceptible genera even after the 2016 global bleaching event suggest that turbidity experienced in BIMS might have reduced the impact of intense irradiance on the reef. Findings from this study indicate the potential existence of turbid resilient reefs across the Philippines and recommend that they be immediately identified and protected.
- Juvenile scleractinian assemblage and its association with adults and benthos at shallow and upper mesophotic depths in fringing and atoll reefs in the PhilippinesAlbelda, Ritzelle L.; Cabaitan, Patrick C.; Sinniger, Frederic P.; Dumalagan, Edwin Jr; Quimpo, Timothy Joseph R.; Olavides, Ronald Dionnie D.; Munar, Jeffrey C.; Villanoy, Cesar L.; Siringan, Fernando (Elsevier B.V, 2020-10-15)The juvenile stage is a critical part of a scleractinian’s life history as it is when they are highly vulnerable to various post-settlement mortality processes, which influence the structure of adult scleractinian assemblages. Although numerous studies have been done to understand dynamics of juvenile assemblages at shallow water reefs (SWRs), similar studies on deeper and less explored reefs, such as mesophotic coral ecosystems (MCEs) remain limited. Using diver-based photo-quadrat method, we aimed to examine how juvenile scleractinian assemblages vary from SWRs (shallow: 3 to 10 m and middle: 10 to 20 m) to upper MCEs (deep: 30 to 40 m) in the fringing and atoll reefs in the Apo Reef Natural Park, Philippines. We also aimed to understand the potential association of juvenile scleractinian densities with adult scleractinian densities and benthic cover. A total of 12 families were recorded for both juveniles and adults with Poritidae being the most abundant, followed by Pocilloporidae and Acroporidae (and Merulinidae for juveniles only). Juvenile densities (ranging from 14 to 36 individuals/m2) varied among depth zone and reef type interactions and had a bimodal distribution, with the middle zone having the lowest density compared to the shallow and deep zones. Juvenile densities were correlated to benthic cover, particularly to high algal cover in the middle zone and availability of bare hard substrate in the shallow zone. Adult densities were also correlated with juvenile densities, but not commonly in the middle zone, emphasizing that it is only one of the many variables that contribute to juvenile assemblages. This study is the first to document juvenile scleractinian assemblages, how they vary from SWRs to MCEs in the Philippines and the Coral Triangle, and demonstrates the importance of benthos and adult brood stock in shaping juvenile scleractinian assemblages across depth zones.
- Sexual reproduction in the soft coral Lobophytum schoedei in Bolinao‐Anda Reef Complex, Pangasinan, northwestern PhilippinesBaran, Christine C.; Baria‐Rodriguez, Maria Vanessa (Wiley, 2021-04-02)The characterization of early life-history strategies of soft corals is important in understanding population maintenance, replenishment, and recovery in disturbed coral reefs. This study examined the sexual reproduction of the soft coral Lobophytum schoedei in the Bolinao-Anda Reef Complex (BARC), a degraded reef in northwestern Philippines. Reproductive strategies such as sexuality, sex ratio, fecundity, and reproductive timing were examined. Random colonies of L. schoedei were sampled a few weeks before the predicted time of spawning to assess fecundity (n = 73 colonies), and sexuality and sex ratio (n = 221 colonies). Monthly sampling of tagged colonies of L. schoedei (n = 20) was done over 13 months to determine the reproductive timing through polyp dissection. Peak of annual spawning was inferred based on the presence of large gametes and their absence in the next sampling period. Results showed that L. schoedei is a gonochoric broadcast spawner with 1:1.1 sex ratio. Although oogenesis and spermatogenesis exhibited overlapping cycles, both gametes matured and spawned in April, coinciding with increasing sea surface temperature. Prior to spawning, oocytes and spermaries ranged 300–633 µm and 150–337 µm in diameter, respectively. Mean female fecundity was 6.7 ± 3.9 oocytes per polyp and male fecundity was 39.2 ± 22.5 (±SD) spermaries per polyp. Some of these results, including the low number of oocytes produced by female polyps, may be caused by sexual reproduction in a degraded reef environment. Understanding these reproductive traits may be useful for predicting the resiliency of populations of L. schoedei in response to ongoing and future environmental change.
- A benefit-cost comparison of varying scales and methods of coral reef restoration in the PhilippinesAbrina, Tara Alessandra S.; Bennett, Jeff (Elsevier, 2021-12)The slow rate of recovery in some reefs around the Philippines has prompted the widespread investment in active reef restoration in the country. However, from the point of view of society, these different coral reef restoration investments have not yet been fully compared in a benefit-cost analysis. In this paper, the economic efficiencies of four coral reef investments are compared – at two different scales (local and national) and two different technologies (‘coral gardening’ and ‘mass larval enhancement’). The values are derived from a previous valuation study that used the Choice Modelling method of estimating non-market values of coral reef restoration. The capacity of these values to facilitate comparisons among reef investments is thus assessed in this paper. Based on predictions from reef restoration scientists the Philippines, the mass larval enhancement investments are estimated to produce higher net benefits and benefit-cost ratios compared to those of coral gardening. In terms of scale, higher net social outcomes for the local-scale investments support more localized approaches to coral restoration.
- Submerged reef features in Apo and Tubbataha Reefs, Philippines, revealed paleo sea-level history during the last deglaciationMunar, Jeffrey C.; Aurelio, Mario A.; Dumalagan, Edwin E.; Tinacba, Erin Joy C.; Doctor, Ma. Angelique A.; Siringan, Fernando P. (Springer, 2024-02-27)The morphology of coral reefs provides an effective benchmark of past sea levels because of their limited vertical range of formation and good geologic preservation. In this study, we analyze the seafloor morphology around two atolls in the Philippines: Tubbataha Reef, in Palawan, and Apo Reef, in Occidental Mindoro. High-resolution multibeam bathymetry to a depth of 200 m reveals seafloor features including reef ridges and staircase-like terraces and scarps. Depth profiles across the reefs show terraces formed within six and seven depth ranges in Tubbataha Reef and in Apo Reef, respectively. These were further observed through a remotely operated vehicle. The terraces and scarps are interpreted as backstepping reefs that were drowned during an overall rise in sea level from the Last Glacial Maximum (LGM). Terraces are used as indicators of paleo sea level and the separation between terraces as the magnitude of sea-level rises coeval with meltwater pulse events during the last deglaciation. The pattern for both Apo and Tubbataha reefs indicates subsidence, consistent with the absence of Holocene emergent features and their atoll morphologies. Subsidence of up to 17 m since the LGM in Apo Reef is mainly attributed to the downbowing of the crust toward Manila Trench. In Tubbataha Reef, subsidence of up to 14 m is attributed to the continuous cooling of the volcanic crust underlying the atoll. These can be used to fill gaps in the tectonic history of the study sites from the last deglaciation.This study was funded by the Department of Science and Technology–Philippine Council for Agriculture, Aquatic and Natural Resources Research Development (DOST-PCARRD) Geophysical Coral Mapping Project and Acquisition of Detailed Bathymetry for Coastal Erosion Management Project both under F. P. Siringan, and National Assessment of Coral Reef Environment (NACRE) Project under Hazel Arceo. We would like to mention, in particular, Dominic Jone Cabactulan, Timothy Quimpo, Ronald Olavides, Mary Ann Calleja, Patrick Cabaitan, and Cesar Villanoy who were members of the project team. We thank the Tubbataha Management Office, Sablayan Local Government Unit, and Department of Environment and Natural Resources for the work permits and logistical help during the surveys.